5 resultados para MR cardiac images
em Universidad Politécnica de Madrid
Resumo:
Non-invasive quantitative assessment of the right ventricular anatomical and functional parameters is a challenging task. We present a semi-automatic approach for right ventricle (RV) segmentation from 4D MR images in two variants, which differ in the amount of user interaction. The method consists of three main phases: First, foreground and background markers are generated from the user input. Next, an over-segmented region image is obtained applying a watershed transform. Finally, these regions are merged using 4D graph-cuts with an intensity based boundary term. For the first variant the user outlines the inside of the RV wall in a few end-diastole slices, for the second two marker pixels serve as starting point for a statistical atlas application. Results were obtained by blind evaluation on 16 testing 4D MR volumes. They prove our method to be robust against markers location and place it favourably in the ranks of existing approaches.
Resumo:
Automatic segmentation and tracking of the coronary artery tree from Cardiac Multislice-CT images is an important goal to improve the diagnosis and treatment of coronary artery disease. This paper presents a semi-automatic algorithm (one input point per vessel) based on morphological grayscale local reconstructions in 3D images devoted to the extraction of the coronary artery tree. The algorithm has been evaluated in the framework of the Coronary Artery Tracking Challenge 2008 [1], obtaining consistent results in overlapping measurements (a mean of 70% of the vessel well tracked). Poor results in accuracy measurements suggest that future work should refine the centerline extraction. The algorithm can be efficiently implemented and its general strategy can be easily extrapolated to a completely automated centerline extraction or to a user interactive vessel extraction
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.
Resumo:
A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.