3 resultados para MR

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive quantitative assessment of the right ventricular anatomical and functional parameters is a challenging task. We present a semi-automatic approach for right ventricle (RV) segmentation from 4D MR images in two variants, which differ in the amount of user interaction. The method consists of three main phases: First, foreground and background markers are generated from the user input. Next, an over-segmented region image is obtained applying a watershed transform. Finally, these regions are merged using 4D graph-cuts with an intensity based boundary term. For the first variant the user outlines the inside of the RV wall in a few end-diastole slices, for the second two marker pixels serve as starting point for a statistical atlas application. Results were obtained by blind evaluation on 16 testing 4D MR volumes. They prove our method to be robust against markers location and place it favourably in the ranks of existing approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EL matemático Bronowski ha dejado escrito que John Von Neumann era, en su opinión, el más inteligente de todos los hombres y mujeres que ha conocido. Esta opinión es muy significativa porque Bronowski ha tratado a casi todos los matemáticos y físicos importantes entre los años treintas y setentas, y sitúa en segundo lugar nada menos que a Enrico Germi, Premio Nobel y genio de la Física.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.