21 resultados para MOSFET switches
em Universidad Politécnica de Madrid
Resumo:
Mobile and wireless communications systems have become an important part of our everyday lives. These ubiquitous technologies have a profound effect on how we live. People predict bright future to wireless technologies, but it wouldn’t be possible without a hard work of thousands of scientists in the wireless innovation research arena. My Marie Curie project is investigating enabling technologies for future mobile and wireless communications systems
Resumo:
Mode switches are used to partition the system’s behavior into different modes to reduce the complexity of large embedded systems. Such systems operate in multiple modes in which each one corresponds to a specific application scenario; these are called Multi-Mode Systems (MMS). A different piece of software is normally executed for each mode. At any given time, the system can be in one of the predefined modes and then be switched to another as a result of a certain condition. A mode switch mechanism (or mode change protocol) is used to shift the system from one mode to another at run-time. In this thesis we have used a hierarchical scheduling framework to implement a multi-mode system called Multi-Mode Hierarchical Scheduling Framework (MMHSF). A two-level Hierarchical Scheduling Framework (HSF) has already been implemented in an open source real-time operating system, FreeRTOS, to support temporal isolation among real-time components. The main contribution of this thesis is the extension of the HSF featuring a multimode feature with an emphasis on making minimal changes in the underlying operating system (FreeRTOS) and its HSF implementation. Our implementation uses fixed-priority preemptive scheduling at both local and global scheduling levels and idling periodic servers. It also now supports different modes of the system which can be switched at run-time. Each subsystem and task exhibit different timing attributes according to mode, and upon a Mode Change Request (MCR) the task-set and timing interfaces of the entire system (including subsystems and tasks) undergo a change. A Mode Change Protocol specifies precisely how the system-mode will be changed. However, an application may not only need to change a mode but also a different mode change protocol semantic. For example, the mode change from normal to shutdown can allow all the tasks to be completed before the mode itself is changed, while changing a mode from normal to emergency may require aborting all tasks instantly. In our work, both the system mode and the mode change protocol can be changed at run-time. We have implemented three different mode change protocols to switch from one mode to another: the Suspend/resume protocol, the Abort protocol, and the Complete protocol. These protocols increase the flexibility of the system, allowing users to select the way they want to switch to a new mode. The implementation of MMHSF is tested and evaluated on an AVR-based 32 bit board EVK1100 with an AVR32UC3A0512 micro-controller. We have tested the behavior of each system mode and for each mode change protocol. We also provide the results for the performance measures of all mode change protocols in the thesis. RESUMEN Los conmutadores de modo son usados para particionar el comportamiento del sistema en diferentes modos, reduciendo así la complejidad de grandes sistemas empotrados. Estos sistemas tienen multiples modos de operación, cada uno de ellos correspondiente a distintos escenarios y para distintas aplicaciones; son llamados Sistemas Multimodales (o en inglés “Multi-Mode Systems” o MMS). Normalmente cada modo ejecuta una parte de código distinto. En un momento dado el sistema, que está en un modo concreto, puede ser cambiado a otro modo distinto como resultado de alguna condicion impuesta previamente. Los mecanismos de cambio de modo (o protocolos de cambio de modo) son usados para mover el sistema de un modo a otro durante el tiempo de ejecución. En este trabajo se ha usado un modelo de sistema operativo para implementar un sistema multimodo llamado MMHSF, siglas en inglés correspondientes a (Multi-Mode Hierarchical Scheduling Framework). Este sistema está basado en el HSF (Hierarchical Scheduling Framework), un modelo de sistema operativo con jerarquía de dos niveles, implementado en un sistema operativo en tiempo real de libre distribución llamado FreeRTOS, capaz de permitir el aislamiento temporal entre componentes. La principal contribución de este trabajo es la ampliación del HSF convirtiendolo en un sistema multimodo realizando los cambios mínimos necesarios sobre el sistema operativo FreeRTOS y la implementación ya existente del HSF. Esta implementación usa un sistema de planificación de prioridad fija para ambos niveles de jerarquía, ocupando el tiempo entre tareas con un “modo reposo”. Además el sistema es capaz de cambiar de un modo a otro en tiempo de ejecución. Cada subsistema y tarea son capaces de tener distintos atributos de tiempo (prioridad, periodo y tiempo de ejecución) en función del modo. Bajo una demanda de cambio de modo (Mode Change Request MCR) se puede variar el set de tareas en ejecución, así como los atributos de los servidores y las tareas. Un protocolo de cambio de modo espeficica precisamente cómo será cambiado el sistema de un modo a otro. Sin embargo una aplicación puede requerir no solo un cambio de modo, sino que lo haga de una forma especifica. Por ejemplo, el cambio de modo de “normal” a “apagado” puede permitir a las tareas en ejecución ser finalizadas antes de que se complete la transición, pero sin embargo el cambio de “normal” a “emergencia” puede requerir abortar todas las tareas instantaneamente. En este trabajo ambas características, tanto el modo como el protocolo de cambio, pueden ser cambiadas en tiempo de ejecución, pero deben ser previamente definidas por el desarrollador. Han sido definidos tres protocolos de cambios: el protocolo “suspender/continuar”, protocolo “abortar” y el protocolo “completar”. Estos protocolos incrementan la flexibilidad del sistema, permitiendo al usuario seleccionar de que forma quieren cambiar hacia el nuevo modo. La implementación del MMHSF ha sido testada y evaluada en una placa AVR EVK1100, con un micro-controlador AVR32UC3A0. Se ha comprobado el comportamiento de los distintos modos para los distintos protocolos, definidos previamente. Como resultado se proporcionan las medidades de rendimiento de los distintos protocolos de cambio de modo.
Resumo:
A particle accelerator is any device that, using electromagnetic fields, is able to communicate energy to charged particles (typically electrons or ionized atoms), accelerating and/or energizing them up to the required level for its purpose. The applications of particle accelerators are countless, beginning in a common TV CRT, passing through medical X-ray devices, and ending in large ion colliders utilized to find the smallest details of the matter. Among the other engineering applications, the ion implantation devices to obtain better semiconductors and materials of amazing properties are included. Materials supporting irradiation for future nuclear fusion plants are also benefited from particle accelerators. There are many devices in a particle accelerator required for its correct operation. The most important are the particle sources, the guiding, focalizing and correcting magnets, the radiofrequency accelerating cavities, the fast deflection devices, the beam diagnostic mechanisms and the particle detectors. Most of the fast particle deflection devices have been built historically by using copper coils and ferrite cores which could effectuate a relatively fast magnetic deflection, but needed large voltages and currents to counteract the high coil inductance in a response in the microseconds range. Various beam stability considerations and the new range of energies and sizes of present time accelerators and their rings require new devices featuring an improved wakefield behaviour and faster response (in the nanoseconds range). This can only be achieved by an electromagnetic deflection device based on a transmission line. The electromagnetic deflection device (strip-line kicker) produces a transverse displacement on the particle beam travelling close to the speed of light, in order to extract the particles to another experiment or to inject them into a different accelerator. The deflection is carried out by the means of two short, opposite phase pulses. The diversion of the particles is exerted by the integrated Lorentz force of the electromagnetic field travelling along the kicker. This Thesis deals with a detailed calculation, manufacturing and test methodology for strip-line kicker devices. The methodology is then applied to two real cases which are fully designed, built, tested and finally installed in the CTF3 accelerator facility at CERN (Geneva). Analytical and numerical calculations, both in 2D and 3D, are detailed starting from the basic specifications in order to obtain a conceptual design. Time domain and frequency domain calculations are developed in the process using different FDM and FEM codes. The following concepts among others are analyzed: scattering parameters, resonating high order modes, the wakefields, etc. Several contributions are presented in the calculation process dealing specifically with strip-line kicker devices fed by electromagnetic pulses. Materials and components typically used for the fabrication of these devices are analyzed in the manufacturing section. Mechanical supports and connexions of electrodes are also detailed, presenting some interesting contributions on these concepts. The electromagnetic and vacuum tests are then analyzed. These tests are required to ensure that the manufactured devices fulfil the specifications. Finally, and only from the analytical point of view, the strip-line kickers are studied together with a pulsed power supply based on solid state power switches (MOSFETs). The solid state technology applied to pulsed power supplies is introduced and several circuit topologies are modelled and simulated to obtain fast and good flat-top pulses.
Resumo:
—In this paper, application of a new technological solution for power switches based on Gallium Nitride and a filter design methodology for high efficiency Envelope Amplifier in RF transmitters are proposed. Comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the Envelope Amplifier, due to better Figure Of Merit (lower product of on- resistance and gate charge). Benefits of their application were verified through the experimental results. The goal of the filter design is to generate the envelope reference with the minimum possible distortion and to improve the efficiency of the Amplifier, obtaining the optimum trade-off between conduction and switching losses.
Resumo:
This paper presents a microinverter to be integrated into a solar module. The proposed solution combines a forward converter and a constant off-time boundary mode control, providing MPPT capability and unity power factor in a single-stage converter. The transformer structure of the power stage remains as in the classical DC-DC forward converter. Transformer primary windings are utilized for power transfer or demagnetization depending on the grid semi-cycle. Furthermore, bidirectional switches are used on the secondary side allowing direct connection of the inverter to the grid. Design considerations for the proposed solution are provided, regarding the inductance value, transformer turns ratio and frequency variation during a line semi-cycle. The decoupling of the twice the line frequency power pulsation is also discussed, as well as the maximum power point tracking (MPPT) capability. Simulation and experimental results for a 100W prototype are enclosed
Resumo:
To date, big data applications have focused on the store-and-process paradigm. In this paper we describe an initiative to deal with big data applications for continuous streams of events. In many emerging applications, the volume of data being streamed is so large that the traditional ‘store-then-process’ paradigm is either not suitable or too inefficient. Moreover, soft-real time requirements might severely limit the engineering solutions. Many scenarios fit this description. In network security for cloud data centres, for instance, very high volumes of IP packets and events from sensors at firewalls, network switches and routers and servers need to be analyzed and should detect attacks in minimal time, in order to limit the effect of the malicious activity over the IT infrastructure. Similarly, in the fraud department of a credit card company, payment requests should be processed online and need to be processed as quickly as possible in order to provide meaningful results in real-time. An ideal system would detect fraud during the authorization process that lasts hundreds of milliseconds and deny the payment authorization, minimizing the damage to the user and the credit card company.
Resumo:
El objetivo de este proyecto es diseñar un sistema capaz de controlar la velocidad de rotación de un motor DC en función del valor de temperatura obtenido de un sensor. Para ello se generará con un microcontrolador una señal PWM, cuyo ciclo de trabajo estará en función de la temperatura medida. En lo que respecta a la fase de diseño, hay dos partes claramente diferenciadas, relativas al hardware y al software. En cuanto al diseño del hardware puede hacerse a su vez una división en dos partes. En primer lugar, hubo que diseñar la circuitería necesaria para adaptar los niveles de tensión entregados por el sensor de temperatura a los niveles requeridos por ADC, requerido para digitalizar la información para su posterior procesamiento por parte del microcontrolador. Por tanto hubo que diseñar capaz de corregir el offset y la pendiente de la función tensión-temperatura del sensor, a fin de adaptarlo al rango de tensión requerido por el ADC. Por otro lado, hubo que diseñar el circuito encargado de controlar la velocidad de rotación del motor. Este circuito estará basado en un transistor MOSFET en conmutación, controlado mediante una señal PWM como se mencionó anteriormente. De esta manera, al variar el ciclo de trabajo de la señal PWM, variará de manera proporcional la tensión que cae en el motor, y por tanto su velocidad de rotación. En cuanto al diseño del software, se programó el microcontrolador para que generase una señal PWM en uno de sus pines en función del valor entregado por el ADC, a cuya entrada está conectada la tensión obtenida del circuito creado para adaptar la tensión generada por el sensor. Así mismo, se utiliza el microcontrolador para representar el valor de temperatura obtenido en una pantalla LCD. Para este proyecto se eligió una placa de desarrollo mbed, que incluye el microcontrolador integrado, debido a que facilita la tarea del prototipado. Posteriormente se procedió a la integración de ambas partes, y testeado del sistema para comprobar su correcto funcionamiento. Puesto que el resultado depende de la temperatura medida, fue necesario simular variaciones en ésta, para así comprobar los resultados obtenidos a distintas temperaturas. Para este propósito se empleó una bomba de aire caliente. Una vez comprobado el funcionamiento, como último paso se diseñó la placa de circuito impreso. Como conclusión, se consiguió desarrollar un sistema con un nivel de exactitud y precisión aceptable, en base a las limitaciones del sistema. SUMMARY: It is obvious that day by day people’s daily life depends more on technology and science. Tasks tend to be done automatically, making them simpler and as a result, user life is more comfortable. Every single task that can be controlled has an electronic system behind. In this project, a control system based on a microcontroller was designed for a fan, allowing it to go faster when temperature rises or slowing down as the environment gets colder. For this purpose, a microcontroller was programmed to generate a signal, to control the rotation speed of the fan depending on the data acquired from a temperature sensor. After testing the whole design developed in the laboratory, the next step taken was to build a prototype, which allows future improvements in the system that are discussed in the corresponding section of the thesis.
Resumo:
Este informe trata el diseño, desarrollo y construcción de un aerodeslizador de pequeño tamaño, equipado con control remoto que permite al usuario actuar sobre la velocidad y dirección del mismo. Este proyecto podrá ser utilizado en un futuro como base para el desarrollo de aplicaciones más complejas. Un aerodeslizador es un medio de transporte cuyo chasis se eleva sobre el suelo por medio de un motor impulsor que hincha una falda colocada en la parte inferior del mismo. Además, uno o más motores se colocan en la parte trasera del vehículo para propulsarlo. El hecho de que el aerodeslizador no este en contacto directo con la tierra, hace que pueda moverse tanto por tierra como sobre el agua o hielo y que sea capaz de superar pequeños obstáculos. Por otra parte, este hecho se convierte a su vez en un problema debido a que su fuerza de rozamiento al desplazarse es muy pequeña, lo que provoca que sea muy difícil de frenar, y tienda a girar por sí mismo debido a la inercia del movimiento y a las fuerzas provocadas por las corrientes de aire debajo del chasis. Sin embargo, para este proyecto no se ha colocado una falda debajo del mismo, debido a que su diseño es bastante complicado, por lo tanto la fricción con el suelo es menor, aumentando los problemas detallados con anterioridad. El proyecto consta de dos partes, mando a distancia y aerodeslizador, que se conectan a través de antenas de radiofrecuencia (RF). El diseño y desarrollo de cada una ha sido realizado de manera separada exceptuando la parte de las comunicaciones entre ambas. El mando a distancia se divide en tres partes. La primera está compuesta por la interfaz de usuario y el circuito que genera las señales analógicas correspondientes a sus indicaciones. La interfaz de usuario la conforman tres potenciómetros: uno rotatorio y dos deslizantes. El rotatorio se utiliza para controlar la dirección de giro del aerodeslizador, mientras que cada uno de los deslizantes se emplea para controlar la fuerza del motor impulsor y del propulsor respectivamente. En los tres casos los potenciómetros se colocan en el circuito de manera que actúan como divisores de tensión controlables. La segunda parte se compone de un microcontrolador de la familia PSoC. Esta familia de microcontroladores se caracteriza por tener una gran adaptabilidad a la aplicación en la que se quieran utilizar debido a la posibilidad de elección de los periféricos, tanto analógicos como digitales, que forman parte del microcontrolador. Para el mando a distancia se configura con tres conversores A/D que se encargan de transformar las señales procedentes de los potenciómetros, tres amplificadores programables para trabajar con toda la escala de los conversores, un LCD que se utiliza para depurar el código en C con el que se programa y un módulo SPI que es la interfaz que conecta el microcontrolador con la antena. Además, se utilizan cuatro pines externos para elegir el canal de transmisión de la antena. La tercera parte es el módulo transceptor de radio frecuencia (RF) QFM-TRX1-24G, que en el mando a distancia funciona como transmisor. Éste utiliza codificación Manchester para asegurar bajas tasas de error. Como alimentación para los circuitos del mando a distancia se utilizan cuatro pilas AA de 1,5 voltios en serie. En el aerodeslizador se pueden distinguir cinco partes. La primera es el módulo de comunicaciones, que utiliza el mismo transceptor que en el mando a distancia, pero esta vez funciona como receptor y por lo tanto servirá como entrada de datos al sistema haciendo llegar las instrucciones del usuario. Este módulo se comunica con el siguiente, un microcontrolador de la familia PSoC, a través de una interfaz SPI. En este caso el microcontrolador se configura con: un modulo SPI, un LCD utilizado para depurar el código y tres módulos PWM (2 de 8 bits y uno de 16 bits) para controlar los motores y el servo del aerodeslizador. Además, se utilizan cuatro pines externos para seleccionar el canal de recepción de datos. La tercera y cuarta parte se pueden considerar conjuntamente. Ambas están compuestas por el mismo circuito electrónico basado en transistores MOSFET. A la puerta de cada uno de los transistores llega una señal PWM de 100 kilohercios que proviene del microcontrolador, que se encarga de controlar el modo de funcionamiento de los transistores, que llevan acoplado un disipador de calor para evitar que se quemen. A su vez, los transistores hacen funcionar al dos ventiladores, que actúan como motores, el impulsor y el propulsor del aerodeslizador. La quinta y última parte es un servo estándar para modelismo. El servo está controlado por una señal PWM, en la que la longitud del pulso positivo establece la posición de la cabeza del servo, girando en uno u otra dirección según las instrucciones enviadas desde el mando a distancia por el usuario. Para el aerodeslizador se han utilizado dos fuentes de alimentación diferentes: una compuesta por 4 pilas AA de 1,5 voltios en serie que alimentarán al microcontrolador y al servo, y 4 baterías de litio recargables de 3,2 voltios en serie que alimentan el circuito de los motores. La última parte del proyecto es el montaje y ensamblaje final de los dispositivos. Para el chasis del aerodeslizador se ha utilizado una cubierta rectangular de poli-estireno expandido, habitualmente encontrado en el embalaje de productos frágiles. Este material es bastante ligero y con una alta resistencia a los golpes, por lo que es ideal para el propósito del proyecto. En el chasis se han realizado dos agujeros: uno circular situado en el centro del mismo en el se introduce y se ajusta con pegamento el motor impulsor, y un agujero con la forma del servo, situado en uno del los laterales estrechos del rectángulo, en el que se acopla el mismo. El motor propulsor está adherido al cabezal giratorio del servo de manera que rota a la vez que él, haciendo girar al aerodeslizador. El resto de circuitos electrónicos y las baterías se fijan al chasis mediante cinta adhesiva y pegamento procurando en todo momento repartir el peso de manera homogénea por todo el chasis para aumentar la estabilidad del aerodeslizador. SUMMARY: In this final year project a remote controlled hovercraft was designed using mainly technology that is well known by students in the embedded systems programme. This platform could be used to develop further and more complex projects. The system was developed dividing the work into two parts: remote control and hovercraft. The hardware was of the hovercraft and the remote control was designed separately; however, the software was designed at the same time since it was needed to develop the communication system. The result of the project was a remote control hovercraft which has a user friendly interface. The system was designed based on microprocessor technologies and uses common remote control technologies. The system has been designed with technology commonly used by the students in Metropolia University so that it can be readily understood in order to develop other projects based on this platform.
Resumo:
Las fuentes de alimentación de modo conmutado (SMPS en sus siglas en inglés) se utilizan ampliamente en una gran variedad de aplicaciones. La tarea más difícil para los diseñadores de SMPS consiste en lograr simultáneamente la operación del convertidor con alto rendimiento y alta densidad de energía. El tamaño y el peso de un convertidor de potencia está dominado por los componentes pasivos, ya que estos elementos son normalmente más grandes y más pesados que otros elementos en el circuito. Para una potencia de salida dada, la cantidad de energía almacenada en el convertidor que ha de ser entregada a la carga en cada ciclo de conmutación, es inversamente proporcional a la frecuencia de conmutación del convertidor. Por lo tanto, el aumento de la frecuencia de conmutación se considera un medio para lograr soluciones más compactas con los niveles de densidad de potencia más altos. La importancia de investigar en el rango de alta frecuencia de conmutación radica en todos los beneficios que se pueden lograr: además de la reducción en el tamaño de los componentes pasivos, el aumento de la frecuencia de conmutación puede mejorar significativamente prestaciones dinámicas de convertidores de potencia. Almacenamiento de energía pequeña y el período de conmutación corto conducen a una respuesta transitoria del convertidor más rápida en presencia de las variaciones de la tensión de entrada o de la carga. Las limitaciones más importantes del incremento de la frecuencia de conmutación se relacionan con mayores pérdidas del núcleo magnético convencional, así como las pérdidas de los devanados debido a los efectos pelicular y proximidad. También, un problema potencial es el aumento de los efectos de los elementos parásitos de los componentes magnéticos - inductancia de dispersión y la capacidad entre los devanados - que causan pérdidas adicionales debido a las corrientes no deseadas. Otro factor limitante supone el incremento de las pérdidas de conmutación y el aumento de la influencia de los elementos parásitos (pistas de circuitos impresos, interconexiones y empaquetado) en el comportamiento del circuito. El uso de topologías resonantes puede abordar estos problemas mediante el uso de las técnicas de conmutaciones suaves para reducir las pérdidas de conmutación incorporando los parásitos en los elementos del circuito. Sin embargo, las mejoras de rendimiento se reducen significativamente debido a las corrientes circulantes cuando el convertidor opera fuera de las condiciones de funcionamiento nominales. A medida que la tensión de entrada o la carga cambian las corrientes circulantes incrementan en comparación con aquellos en condiciones de funcionamiento nominales. Se pueden obtener muchos beneficios potenciales de la operación de convertidores resonantes a más alta frecuencia si se emplean en aplicaciones con condiciones de tensión de entrada favorables como las que se encuentran en las arquitecturas de potencia distribuidas. La regulación de la carga y en particular la regulación de la tensión de entrada reducen tanto la densidad de potencia del convertidor como el rendimiento. Debido a la relativamente constante tensión de bus que se encuentra en arquitecturas de potencia distribuidas los convertidores resonantes son adecuados para el uso en convertidores de tipo bus (transformadores cc/cc de estado sólido). En el mercado ya están disponibles productos comerciales de transformadores cc/cc de dos puertos que tienen muy alta densidad de potencia y alto rendimiento se basan en convertidor resonante serie que opera justo en la frecuencia de resonancia y en el orden de los megahercios. Sin embargo, las mejoras futuras en el rendimiento de las arquitecturas de potencia se esperan que vengan del uso de dos o más buses de distribución de baja tensión en vez de una sola. Teniendo eso en cuenta, el objetivo principal de esta tesis es aplicar el concepto del convertidor resonante serie que funciona en su punto óptimo en un nuevo transformador cc/cc bidireccional de puertos múltiples para atender las necesidades futuras de las arquitecturas de potencia. El nuevo transformador cc/cc bidireccional de puertos múltiples se basa en la topología de convertidor resonante serie y reduce a sólo uno el número de componentes magnéticos. Conmutaciones suaves de los interruptores hacen que sea posible la operación en las altas frecuencias de conmutación para alcanzar altas densidades de potencia. Los problemas posibles con respecto a inductancias parásitas se eliminan, ya que se absorben en los Resumen elementos del circuito. El convertidor se caracteriza con una muy buena regulación de la carga propia y cruzada debido a sus pequeñas impedancias de salida intrínsecas. El transformador cc/cc de puertos múltiples opera a una frecuencia de conmutación fija y sin regulación de la tensión de entrada. En esta tesis se analiza de forma teórica y en profundidad el funcionamiento y el diseño de la topología y del transformador, modelándolos en detalle para poder optimizar su diseño. Los resultados experimentales obtenidos se corresponden con gran exactitud a aquellos proporcionados por los modelos. El efecto de los elementos parásitos son críticos y afectan a diferentes aspectos del convertidor, regulación de la tensión de salida, pérdidas de conducción, regulación cruzada, etc. También se obtienen los criterios de diseño para seleccionar los valores de los condensadores de resonancia para lograr diferentes objetivos de diseño, tales como pérdidas de conducción mínimas, la eliminación de la regulación cruzada o conmutación en apagado con corriente cero en plena carga de todos los puentes secundarios. Las conmutaciones en encendido con tensión cero en todos los interruptores se consiguen ajustando el entrehierro para obtener una inductancia magnetizante finita en el transformador. Se propone, además, un cambio en los señales de disparo para conseguir que la operación con conmutaciones en apagado con corriente cero de todos los puentes secundarios sea independiente de la variación de la carga y de las tolerancias de los condensadores resonantes. La viabilidad de la topología propuesta se verifica a través una extensa tarea de simulación y el trabajo experimental. La optimización del diseño del transformador de alta frecuencia también se aborda en este trabajo, ya que es el componente más voluminoso en el convertidor. El impacto de de la duración del tiempo muerto y el tamaño del entrehierro en el rendimiento del convertidor se analizan en un ejemplo de diseño de transformador cc/cc de tres puertos y cientos de vatios de potencia. En la parte final de esta investigación se considera la implementación y el análisis de las prestaciones de un transformador cc/cc de cuatro puertos para una aplicación de muy baja tensión y de decenas de vatios de potencia, y sin requisitos de aislamiento. Abstract Recently, switch mode power supplies (SMPS) have been used in a great variety of applications. The most challenging issue for designers of SMPS is to achieve simultaneously high efficiency operation at high power density. The size and weight of a power converter is dominated by the passive components since these elements are normally larger and heavier than other elements in the circuit. If the output power is constant, the stored amount of energy in the converter which is to be delivered to the load in each switching cycle is inversely proportional to the converter’s switching frequency. Therefore, increasing the switching frequency is considered a mean to achieve more compact solutions at higher power density levels. The importance of investigation in high switching frequency range comes from all the benefits that can be achieved. Besides the reduction in size of passive components, increasing switching frequency can significantly improve dynamic performances of power converters. Small energy storage and short switching period lead to faster transient response of the converter against the input voltage and load variations. The most important limitations for pushing up the switching frequency are related to increased conventional magnetic core loss as well as the winding loss due to the skin and proximity effect. A potential problem is also increased magnetic parasitics – leakage inductance and capacitance between the windings – that cause additional loss due to unwanted currents. Higher switching loss and the increased influence of printed circuit boards, interconnections and packaging on circuit behavior is another limiting factor. Resonant power conversion can address these problems by using soft switching techniques to reduce switching loss incorporating the parasitics into the circuit elements. However the performance gains are significantly reduced due to the circulating currents when the converter operates out of the nominal operating conditions. As the input voltage or the load change the circulating currents become higher comparing to those ones at nominal operating conditions. Multiple Input-Output Many potential gains from operating resonant converters at higher switching frequency can be obtained if they are employed in applications with favorable input voltage conditions such as those found in distributed power architectures. Load and particularly input voltage regulation reduce a converter’s power density and efficiency. Due to a relatively constant bus voltage in distributed power architectures the resonant converters are suitable for bus voltage conversion (dc/dc or solid state transformation). Unregulated two port dc/dc transformer products achieving very high power density and efficiency figures are based on series resonant converter operating just at the resonant frequency and operating in the megahertz range are already available in the market. However, further efficiency improvements of power architectures are expected to come from using two or more separate low voltage distribution buses instead of a single one. The principal objective of this dissertation is to implement the concept of the series resonant converter operating at its optimum point into a novel bidirectional multiple port dc/dc transformer to address the future needs of power architectures. The new multiple port dc/dc transformer is based on a series resonant converter topology and reduces to only one the number of magnetic components. Soft switching commutations make possible high switching frequencies to be adopted and high power densities to be achieved. Possible problems regarding stray inductances are eliminated since they are absorbed into the circuit elements. The converter features very good inherent load and cross regulation due to the small output impedances. The proposed multiple port dc/dc transformer operates at fixed switching frequency without line regulation. Extensive theoretical analysis of the topology and modeling in details are provided in order to compare with the experimental results. The relationships that show how the output voltage regulation and conduction losses are affected by the circuit parasitics are derived. The methods to select the resonant capacitor values to achieve different design goals such as minimum conduction losses, elimination of cross regulation or ZCS operation at full load of all the secondary side bridges are discussed. ZVS turn-on of all the switches is achieved by relying on the finite magnetizing inductance of the Abstract transformer. A change of the driving pattern is proposed to achieve ZCS operation of all the secondary side bridges independent on load variations or resonant capacitor tolerances. The feasibility of the proposed topology is verified through extensive simulation and experimental work. The optimization of the high frequency transformer design is also addressed in this work since it is the most bulky component in the converter. The impact of dead time interval and the gap size on the overall converter efficiency is analyzed on the design example of the three port dc/dc transformer of several hundreds of watts of the output power for high voltage applications. The final part of this research considers the implementation and performance analysis of the four port dc/dc transformer in a low voltage application of tens of watts of the output power and without isolation requirements.
Resumo:
Optical logic cells, employed in several tasks as optical computing or optically controlled switches for photonic switching, offer a very particular behavior when the working conditions are slightly modified. One of the more striking changes occurs when some delayed feedback is applied between one of the possible output gates and a control input. Some of these new phenomena have been studied by us and reported in previous papers. A chaotic behavior is one of the more characteristic results and its possible applications range from communications to cryptography. But the main problem related with this behavior is the binary character of the resulting signal. Most of the nowadays-employed techniques to analyze chaotic signals concern to analogue signals where algebraic equations are possible to obtain. There are no specific tools to study digital chaotic signals. Some methods have been proposed. One of the more used is equivalent to the phase diagram in analogue chaos. The binary signal is converted to hexadecimal and then analyzed. We represented the fractal characteristics of the signal. It has the characteristics of a strange attractor and gives more information than the obtained from previous methods. A phase diagram, as the one obtained by previous techniques, may fully cover its surface with the trajectories and almost no information may be obtained from it. Now, this new method offers the evolution around just a certain area being this lines the strange attractor.
Resumo:
In this letter , we report a new method for óptical switching based on the electro-optical properties of liquid crystal materials and, in particular, of the nematic type. The basis of this new method is the use of twisted wedge structure that has not been reported before elsewhere. In the past several years , great efforts in integrated optics have been made to develop optical switching devices with fast speed by using electro-optic, acousto-optic or magneto -optic materials. A mechanically operated óptical switch made of grade-index rod 1enses and e1ectromagnets has been proposed too . Switches of this kind include one input and two output waveguides and, depending on the app1ied voltage, one incident light on the switch exits either in one or another of the two output waveguides.
Resumo:
This letter presents a temperature-sensing technique on the basis of the temperature dependency of MOSFET leakage currents. To mitigate the effects of process variation, the ratio of two different leakage current measurements is calculated. Simulations show that this ratio is robust to process spread. The resulting sensor is quite small-0.0016 mm2 including an analog-to-digital conversion-and very energy efficient, consuming less than 640 pJ/conversion. After a two-point calibration, the accuracy in a range of 40°C-110°C is less than 1.5°C , which makes the technique suitable for thermal management applications.
Resumo:
Power supply unpredictable uctuations jeopardize the functioning of several types of current electronic systems. This work presents a power supply sensor based on a voltage divider followed by buffer-comparator cells employing just MOSFET transistors and provides a digital output. The divider outputs are designed to change more slowly than the thresholds of the comparators, in this way the sensor is able to detect voltage droops. The sensor is implemented in a 65nm technology node occupying an area of 2700?m2 and displaying a power consumption of 50?W. It is designed to work with no voltage reference and with no clock and aiming to obtain a fast response.
Resumo:
El objetivo de este Proyecto Fin de Grado es el diseño de megafonía y PAGA (Public Address /General Alarm) de la estación de tren Waipahu Transit Center en la ciudad de Honolulú, Hawái. Esta estación forma parte de una nueva línea de tren que está en proceso de construcción actualmente llamada Honolulu Rail Transit. Inicialmente la línea de tren constará de 21 estaciones, en las que prácticamente todas están diseñadas como pasos elevados usando como referencia las autopistas que cruzan la isla. Se tiene prevista su fecha de finalización en el año 2019, aunque las primeras estaciones se inaugurarán en 2017. Se trata en primer lugar un estudio acústico del recinto a sonorizar, eligiendo los equipos necesarios: conmutadores, altavoces, amplificadores, procesador, equipo de control y micrófonos. Este primer estudio sirve para obtener una aproximación de equipos necesarios, así como la posible situación de estos dentro de la estación. Tras esto, se procede a la simulación de la estación mediante el programa de simulación acústica y electroacústica EASE 4.4. Para ello, se diseña la estación en un modelo 3D, en el que cada superficie se asocia a su material correspondiente. Para facilitar el diseño y el cómputo de las simulaciones se divide la estación en 3 partes por separado. Cada una corresponde a un nivel de la estación: Ground level, el nivel inferior que contiene la entrada; Concourse Level, pasillo que comunica los dos andenes; y Platform Level, en el que realizarán las paradas los trenes. Una vez realizado el diseño se procede al posicionamiento de altavoces en los diferentes niveles de la estación. Debido al clima existente en la isla, el cual ronda los 20°C a lo largo de todo el año, no es necesaria la instalación de sistemas de aire acondicionado o calefacción, por lo que la estación no está totalmente cerrada. Esto supone un problema al realizar las simulaciones en EASE, ya que al tratarse de un recinto abierto se deberán hallar parámetros como el tiempo de reverberación o el volumen equivalente por otros medios. Para ello, se utilizará el método Ray Tracing, mediante el cual se halla el tiempo de reverberación por la respuesta al impulso de la sala; y a continuación se calcula un volumen equivalente del recinto mediante la fórmula de Eyring. Con estos datos, se puede proceder a calcular los parámetros necesarios: nivel de presión sonora directo, nivel de presión sonora total y STI (Speech Transmission Index). Para obtener este último será necesario ecualizar antes en cada uno de los niveles de la estación. Una vez hechas las simulaciones, se comprueba que el nivel de presión sonora y los valores de inteligibilidad son acordes con los requisitos dados por el cliente. Tras esto, se procede a realizar los bucles de altavoces y el cálculo de amplificadores necesarios. Se estudia la situación de los micrófonos, que servirán para poder variar la potencia emitida por los altavoces dependiendo del nivel de ruido en la estación. Una vez obtenidos todos los equipos necesarios en la estación, se hace el conexionado entre éstos, tanto de una forma simplificada en la que se pueden ver los bucles de altavoces en cada nivel de la estación, como de una forma más detallada en la que se muestran las conexiones entre cada equipo del rack. Finalmente, se realiza el etiquetado de los equipos y un presupuesto estimado con los costes del diseño del sistema PAGA. ABSTRACT. The aim of this Final Degree Project is the design of the PAGA (Public Address / General Alarm) system in the train station Waipahu Transit Center in the city of Honolulu, Hawaii. This station is part of a new rail line that is currently under construction, called Honolulu Rail Transit. Initially, the rail line will have 21 stations, in which almost all are designed elevated using the highways that cross the island as reference. At first, it is treated an acoustic study in the areas to cover, choosing the equipment needed: switches, loudspeakers, amplifiers, DPS, control station and microphones. This first study helps to obtain an approximation of the equipments needed, as well as their placement inside the station. Thereafter, it is proceeded to do the simulation of the station through the acoustics and electroacoustics simulation software EASE 4.4. In order to do that, it is made the 3D design of the station, in which each surface is associated with its material. In order to ease the design and calculation of the simulations, the station has been divided in 3 zones. Each one corresponds with one level of the station: Ground Level, the lower level that has the entrance; Concourse Level, a corridor that links the two platforms; and Platform Level, where the trains will stop. Once the design is made, it is proceeded to place the speakers in the different levels of the station. Due to the weather in the island, which is about 20°C throughout the year, it is not necessary the installation of air conditioning or heating systems, so the station is not totally closed. This cause a problem when making the simulations in EASE, as the project is open, and it will be necessary to calculate parameters like the reverberation time or the equivalent volume by other methods. In order to do that, it will be used the Ray Tracing method, by which the reverberation time is calculated by the impulse response; and then it is calculated the equivalent volume of the area with the Eyring equation. With this information, it can be proceeded to calculate the parameters needed: direct sound pressure level, total sound pressure level and STI (Speech Transmission Index). In order to obtain the STI, it will be needed to equalize before in each of the station’s levels. Once the simulations are done, it is checked that the sound pressure level and the intelligibility values agree with the requirements given by the client. After that, it is proceeded to perform the speaker’s loops and the calculation of the amplifiers needed. It is studied the placement of the microphones, which will help to vary the power emitted by the speakers depending on the background noise level in the station. Once obtained all the necessary equipment in the station, it is done the connection diagram, both a simplified diagram in which there can be seen the speaker’s loops in each level of the station, or a more detailed diagram in which it is shown the wiring between each equipment of the rack. At last, it is done the labeling of the equipments and an estimated budget with the expenses for the PAGA design.
Resumo:
This article presents a wide band compact high isolation photoconductive switch, which is based on the series-shunt switch design with three photoconductive switches made of diced high-resistivity silicon wafer placed over a microstrip gap and activated by 808-nm near-infrared laser diodes. The switch shows an insertion loss of 1.2 dB and an isolation of 44.8 dB at 2 GHz. It is easy to operate and control by light, high-speed, electromagnetically transparent and it does not require any biasing circuits.