3 resultados para MODULATES BAROREFLEX
em Universidad Politécnica de Madrid
Resumo:
Animal models and human functional imaging data implicate the dopamine system in mediating enhanced encoding of novel stimuli into human memory. A separate line of investigation suggests an association between a functional polymorphism in the promoter region for the human dopamine 4 receptor gene (DRD4) and sensitivity to novelty. We demonstrate, in two independent samples, that the -521Cmayor queT DRD4 promoter polymorphism determines the magnitude of human memory enhancement for contextually novel, perceptual oddball stimuli in an allele dose-dependent manner. The genotype-dependent memory enhancement conferred by the C allele is associated with increased neuronal responses during successful encoding of perceptual oddballs in the ventral striatum, an effect which is again allele dose-dependent. Furthermore, with repeated presentations of oddball stimuli, this memory advantage decreases, an effect mirrored by adaptation of activation in the hippocampus and substantia nigra/ventral tegmental area in C carriers only. Thus, a dynamic modulation of human memory enhancement for perceptually salient stimuli is associated with activation of a dopaminergic-hippocampal system, which is critically dependent on a functional polymorphism in the DRD4 promoter region.
Resumo:
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region.
Resumo:
Pastures are among the most important ecosystems in Europe considering their biodiversity and dis- tribution area. However, their response to increasing tropospheric ozone (O 3 ) and nitrogen (N) deposi- tion, two of the main drivers of global change, is still uncertain. A new Open-Top Chamber (OTC) experiment was performed in central Spain, aiming to study annual pasture response to O 3 and N in close to natural growing conditions. A mixture of six species of three representative families was sowed in the fi eld. Plants were exposed for 40 days to four O 3 treatments: fi ltered air, non- fi ltered air (NFA) repro- ducing ambient levels and NFA supplemented with 20 and 40 nl l � 1 O 3 . Three N treatments were considered to reach the N integrated doses of “ background ” , þ 20 or þ 40 kg N ha � 1 . Ozone signi fi cantly reduced green and total aboveground biomass (maximum reduction 25%) and increased the senescent biomass (maximum increase 40%). Accordingly, O 3 decreased community Gross Primary Production due to both a global reduction of ecosystem CO 2 exchange and an increase of ecosystem respiration. Nitrogen could partially counterbalance O 3 effects on aboveground biomass when the levels of O 3 were moderate, but at the same time O 3 exposure reduced the fertilization effect of higher N availability. Therefore, O 3 must be considered as a stress factor for annual pastures in the Mediterranean areas.