19 resultados para MIP Mathematical Programming Job Shop Scheduling
em Universidad Politécnica de Madrid
Resumo:
Los problemas de programación de tareas son muy importantes en el mundo actual. Se puede decir que se presentan en todos los fundamentos de la industria moderna, de ahí la importancia de que estos sean óptimos, de forma que se puedan ahorrar recursos que estén asociados al problema. La programación adecuada de trabajos en procesos de manufactura, constituye un importante problema que se plantea dentro de la producción en muchas empresas. El orden en que estos son procesados, no resulta indiferente, sino que determinará algún parámetro de interés, cuyos valores convendrá optimizar en la medida de lo posible. Así podrá verse afectado el coste total de ejecución de los trabajos, el tiempo necesario para concluirlos o el stock de productos en curso que será generado. Esto conduce de forma directa al problema de determinar cuál será el orden más adecuado para llevar a cabo los trabajos con vista a optimizar algunos de los anteriores parámetros u otros similares. Debido a las limitaciones de las técnicas de optimización convencionales, en la presente tesis se presenta una metaheurística basada en un Algoritmo Genético Simple (Simple Genetic Algorithm, SGA), para resolver problemas de programación de tipo flujo general (Job Shop Scheduling, JSS) y flujo regular (Flow Shop Scheduling, FSS), que están presentes en un taller con tecnología de mecanizado con el objetivo de optimizar varias medidas de desempeño en un plan de trabajo. La aportación principal de esta tesis, es un modelo matemático para medir el consumo de energía, como criterio para la optimización, de las máquinas que intervienen en la ejecución de un plan de trabajo. Se propone además, un método para mejorar el rendimiento en la búsqueda de las soluciones encontradas, por parte del Algoritmo Genético Simple, basado en el aprovechamiento del tiempo ocioso. ABSTRACT The scheduling problems are very important in today's world. It can be said to be present in all the basics of modern industry, hence the importance that these are optimal, so that they can save resources that are associated with the problem. The appropriate programming jobs in manufacturing processes is an important problem that arises in production in many companies. The order in which they are processed, it is immaterial, but shall determine a parameter of interest, whose values agree optimize the possible. This may be affected the total cost of execution of work, the time needed to complete them or the stock of work in progress that will be generated. This leads directly to the problem of determining what the most appropriate order to carry out the work in order to maximize some of the above parameters or other similar. Due to the limitations of conventional optimization techniques, in this work present a metaheuristic based on a Simple Genetic Algorithm (Simple Genetic Algorithm, SGA) to solve programming problems overall flow rate (Job Shop Scheduling, JSS) and regular flow (Flow Shop Scheduling, FSS), which are present in a workshop with machining technology in order to optimize various performance measures in a plan. The main contribution of this thesis is a mathematical model to measure the energy consumption as a criterion for the optimization of the machines involved in the implementation of a work plan. It also proposes a method to improve performance in finding the solutions, by the simple genetic algorithm, based on the use of idle time.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.
Resumo:
Actualmente, la escasez de agua constituye un importante problema en muchos lugares del mundo. El crecimiento de la población, la creciente necesidad de alimentos, el desarrollo socio-económico y el cambio climático ejercen una importante y cada vez mayor presión sobre los recursos hídricos, a la que muchos países van a tener que enfrentarse en los próximos anos. La región Mediterránea es una de las regiones del mundo de mayor escasez de recursos hídricos, y es además una de las zonas más vulnerables al cambio climático. La mayoría de estudios sobre cambio climático prevén mayores temperaturas y una disminución de las precipitaciones, y una creciente escasez de agua debida a la disminución de recursos disponibles y al aumento de las demandas de riego. En el contexto actual de desarrollo de políticas se demanda cada vez más una mayor consideración del cambio climático en el marco de las políticas sectoriales. Sin embargo, los estudios enfocados a un solo sector no reflejan las múltiples dimensiones del los efectos del cambio climático. Numerosos estudios científicos han demostrado que el cambio climático es un fenómeno de naturaleza multi-dimensional y cuyos efectos se transmiten a múltiples escalas. Por tanto, es necesaria la producción de estudios y herramientas de análisis capaces de reflejar todas estas dimensiones y que contribuyan a la elaboración de políticas robustas en un contexto de cambio climático. Esta investigación pretende aportar una visión global de la problemática de la escasez de agua y los impactos, la vulnerabilidad y la adaptación al cambio climático en el contexto de la región mediterránea. La investigación presenta un marco integrado de modelización que se va ampliando progresivamente en un proceso secuencial y multi-escalar en el que en cada etapa se incorpora una nueva dimensión. La investigación consta de cuatro etapas que se abordan a lo largo de cuatro capítulos. En primer lugar, se estudia la vulnerabilidad económica de las explotaciones de regadío del Medio Guadiana, en España. Para ello, se utiliza un modelo de programación matemática en combinación con un modelo econométrico. A continuación, en la segunda etapa, se utiliza un modelo hidro-económico que incluye un modelo de cultivo para analizar los procesos que tienen lugar a escala de cultivo, explotación y cuenca teniendo en cuenta distintas escalas geográficas y de toma de decisiones. Esta herramienta permite el análisis de escenarios de cambio climático y la evaluación de posibles medidas de adaptación. La tercera fase consiste en el análisis de las barreras que dificultan la aplicación de procesos de adaptación para lo cual se analizan las redes socio-institucionales en la cuenca. Finalmente, la cuarta etapa aporta una visión sobre la escasez de agua y el cambio climático a escala nacional y regional mediante el estudio de distintos escenarios de futuro plausibles y los posibles efectos de las políticas en la escasez de agua. Para este análisis se utiliza un modelo econométrico de datos de panel para la región mediterránea y un modelo hidro-económico que se aplica a los casos de estudio de España y Jordania. Los resultados del estudio ponen de relieve la importancia de considerar múltiples escalas y múltiples dimensiones en el estudio de la gestión de los recursos hídricos y la adaptación al cambio climático en los contextos mediterráneos de escasez de agua estudiados. Los resultados muestran que los impactos del cambio climático en la cuenca del Guadiana y en el conjunto de España pueden comprometer la sostenibilidad del regadío y de los ecosistemas. El análisis a escala de cuenca hidrográfica resalta la importancia de las interacciones entre los distintos usuarios del agua y en concreto entre distintas comunidades de regantes, así como la necesidad de fortalecer el papel de las instituciones y de fomentar la creación de una visión común en la cuenca para facilitar la aplicación de los procesos de adaptación. Asimismo, los resultados de este trabajo evidencian también la capacidad y el papel fundamental de las políticas para lograr un desarrollo sostenible y la adaptación al cambio climático es regiones de escasez de agua tales como la región mediterránea. Especialmente, este trabajo pone de manifiesto el potencial de la Directiva Marco del Agua de la Unión Europea para lograr una efectiva adaptación al cambio climático. Sin embargo, en Jordania, además de la adaptación al cambio climático, es preciso diseñar estrategias de desarrollo sostenible más ambiciosas que contribuyan a reducir el riesgo futuro de escasez de agua. ABSTRACT Water scarcity is becoming a major concern in many parts of the world. Population growth, increasing needs for food production, socio-economic development and climate change represent pressures on water resources that many countries around the world will have to deal in the coming years. The Mediterranean region is one of the most water scarce regions of the world and is considered a climate change hotspot. Most projections of climate change envisage an increase in temperatures and a decrease in precipitation and a resulting reduction in water resources availability as a consequence of both reduced water availability and increased irrigation demands. Current policy development processes require the integration of climate change concerns into sectoral policies. However, sector-oriented studies often fail to address all the dimensions of climate change implications. Climate change research in the last years has evidenced the need for more integrated studies and methodologies that are capable of addressing the multi-scale and multi-dimensional nature of climate change. This research attempts to provide a comprehensive view of water scarcity and climate change impacts, vulnerability and adaptation in Mediterranean contexts. It presents an integrated modelling framework that is progressively enlarged in a sequential multi-scale process in which a new dimension of climate change and water resources is addressed at every stage. It is comprised of four stages, each one explained in a different chapter. The first stage explores farm-level economic vulnerability in the Spanish Guadiana basin using a mathematical programming model in combination with an econometric model. Then, in a second stage, the use of a hydro-economic modelling framework that includes a crop growth model allows for the analysis of crop, farm and basin level processes taking into account different geographical and decision-making scales. This integrated tool is used for the analysis of climate change scenarios and for the assessment of potential adaptation options. The third stage includes the analysis of barriers to the effective implementation of adaptation processes based on socioinstitutional network analysis. Finally, a regional and country level perspective of water scarcity and climate change is provided focusing on different possible socio-economic development pathways and the effect of policies on future water scarcity. For this analysis, a panel-data econometric model and a hydro-economic model are applied for the analysis of the Mediterranean region and country level case studies in Spain and Jordan. The overall results of the study demonstrate the value of considering multiple scales and multiple dimensions in water management and climate change adaptation in the Mediterranean water scarce contexts analysed. Results show that climate change impacts in the Guadiana basin and in Spain may compromise the sustainability of irrigation systems and ecosystems. The analysis at the basin level highlights the prominent role of interactions between different water users and irrigation districts and the need to strengthen institutional capacity and common understanding in the basin to enhance the implementation of adaptation processes. The results of this research also illustrate the relevance of water policies in achieving sustainable development and climate change adaptation in water scarce areas such as the Mediterranean region. Specifically, the EU Water Framework Directive emerges as a powerful trigger for climate change adaptation. However, in Jordan, outreaching sustainable development strategies are required in addition to climate change adaptation to reduce future risk of water scarcity.
Resumo:
In this paper some mathematical programming models are exposed in order to set the number of services on a specified system of bus lines, which are intended to assist high demand levels which may arise because of the disruption of Rapid Transit services or during the celebration of massive events. By means of this model two types of basic magnitudes can be determined, basically: a) the number of bus units assigned to each line and b) the number of services that should be assigned to those units. In these models, passenger flow assignment to lines can be considered of the system optimum type, in the sense that the assignment of units and of services is carried out minimizing a linear combination of operation costs and total travel time of users. The models consider delays experienced by buses as a consequence of the get in/out of the passengers, queueing at stations and the delays that passengers experience waiting at the stations. For the case of a congested strategy based user optimal passenger assignment model with strict capacities on the bus lines, the use of the method of successive averages is shown.
Resumo:
In this paper, a mathematical programming model and a heuristically derived solution is described to assist with the efficient planning of services for a set of auxiliary bus lines (a bus-bridging system) during disruptions of metro and rapid transit lines. The model can be considered static and takes into account the average flows of passengers over a given period of time (i.e., the peak morning traffic hour) Auxiliary bus services must accommodate very high demand levels, and the model presented is able to take into account the operation of a bus-bridging system under congested conditions. A general analysis of the congestion in public transportation lines is presented, and the results are applied to the design of a bus-bridging system. A nonlinear integer mathematical programming model and a suitable approximation of this model are then formulated. This approximated model can be solved by a heuristic procedure that has been shown to be computationally viable. The output of the model is as follows: (a) the number of bus units to assign to each of the candidate lines of the bus-bridging system; (b) the routes to be followed by users passengers of each of the origin–destination pairs; (c) the operational conditions of the components of the bus-bridging system, including the passenger load of each of the line segments, the degree of saturation of the bus stops relative to their bus input flows, the bus service times at bus stops and the passenger waiting times at bus stops. The model is able to take into account bounds with regard to the maximum number of passengers waiting at bus stops and the space available at bus stops for the queueing of bus units. This paper demonstrates the applicability of the model with two realistic test cases: a railway corridor in Madrid and a metro line in Barcelona Planificación de los servicios de lineas auxiliares de autobuses durante las incidencias de las redes de metro y cercanías. El modelo estudia el problema bajo condiciones de alta demanda y condiciones de congestión. El modelo no lineal resultante es resuelto mediante heurísticas que demuestran su utilidad. Se demuestran los resultados en dos corredores de las ciudades de Barcelona y Madrid.
Resumo:
Water supply instability is one of the main risks faced by irrigation districts and farmers. Water procurement decision optimisation is essential in order to increase supply reliability and reduce costs. Water markets, such as spot purchases or water supply option contracts, can make this decision process more flexible. We analyse the potential interest in an option contract for an irrigation district that has access to several water sources. We apply a stochastic recursive mathematical programming model to simulate the water procurement decisions of an irrigation district?s board operating in a context of water supply uncertainty in south-eastern Spain. We analyse what role different option contracts could play in securing its water supply. Results suggest that the irrigation district would be willing to accept the proposed option contract in most cases subject to realistic values of the option contract financial terms. Of nine different water sources, desalination and the option contract are the main substitutes, where the use of either depends on the contract parameters. The contract premium and optioned volume are the variables that have a greater impact on the irrigation district?s decisions. Key words: Segura Basin, stochastic recursive programming, water markets, water supply option contract, water supply risk.
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.
Resumo:
The province of Salta is located the Northwest of Argentina in the border with Bolivia, Chile and Paraguay. Its Capital is the city of Salta that concentrates half of the inhabitants of the province and has grown to 600000 hab., from a small active Spanish town well founded in 1583. The city is crossed by the Arenales River descending from close mountains at North, source of water and end of sewers. But with actual growing it has become a focus of infection and of remarkable unhealthiness. It is necessary to undertake a plan for the recovery of the river, directed to the attainment of the well-being and to improve the life?s quality of the Community. The fundamental idea of the plan is to obtain an ordering of the river basin and an integral management of the channel and its surroundings, including the cleaning out. The improvement of the water?s quality, the healthiness of the surroundings and the improvement of the environment, must go hand by hand with the development of sport activities, of relaxation, tourism, establishment of breeding grounds, kitchen gardens, micro enterprises with clean production and other actions that contribute to their benefit by the society, that being a basic factor for their care and sustainable use. The present pollution is organic, chemical, industrial, domestic, due to the disposition of sweepings and sewer effluents that affects not only the flora and small fauna, destroying the biodiversity, but also to the health of people living in their margins. Within the plan it will be necessary to consider, besides hydric and environmental cleaning and the prevention of floods, the planning of the extraction of aggregates, the infrastructure and consolidation of margins works and the arrangement of all the river basin. It will be necessary to consider the public intervention at state, provincial and local level, and the private intervention. In the model it has been necessary to include the sub-model corresponding to the election of the entity to be the optimal instrument to reach the proposed objectives, giving an answer to the social, environmental and economic requirements. For that the authors have used multi-criteria decision methods to qualify and select alternatives, and for the programming of their implementation. In the model the authors have contemplated the short, average and long term actions. They conform a Paretooptimal alternative which secures the ordering, integral and suitable management of the basin of the Arenales River, focusing on its passage by the city of Salta.
Resumo:
Abstract is not available.
Resumo:
Traditional logic programming languages, such as Prolog, use a fixed left-to-right atom scheduling rule. Recent logic programming languages, however, usually provide more flexible scheduling in which computation generally proceeds leftto- right but in which some calis are dynamically "delayed" until their arguments are sufRciently instantiated to allow the cali to run efficiently. Such dynamic scheduling has a significant cost. We give a framework for the global analysis of logic programming languages with dynamic scheduling and show that program analysis based on this framework supports optimizations which remove much of the overhead of dynamic scheduling.
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.
Resumo:
The purpose of this document is to serve as the printed material for the seminar "An Introductory Course on Constraint Logic Programming". The intended audience of this seminar are industrial programmers with a degree in Computer Science but little previous experience with constraint programming. The seminar itself has been field tested, prior to the writing of this document, with a group of the application programmers of Esprit project P23182, "VOCAL", aimed at developing an application in scheduling of field maintenance tasks in the context of an electric utility company. The contents of this paper follow essentially the flow of the seminar slides. However, there are some differences. These differences stem from our perception from the experience of teaching the seminar, that the technical aspects are the ones which need more attention and clearer explanations in the written version. Thus, this document includes more examples than those in the slides, more exercises (and the solutions to them), as well as four additional programming projects, with which we hope the reader will obtain a clearer view of the process of development and tuning of programs using CLP. On the other hand, several parts of the seminar have been taken out: those related with the account of fields and applications in which C(L)P is useful, and the enumerations of C(L)P tools available. We feel that the slides are clear enough, and that for more information on available tools, the interested reader will find more up-to-date information by browsing the Web or asking the vendors directly. More details in this direction will actually boil down to summarizing a user manual, which is not the aim of this document.