5 resultados para MICRO-CT IMAGING
em Universidad Politécnica de Madrid
Resumo:
Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).
Resumo:
InsideFood explicitly aims at measuring food microstructure, the spatial distribution of food components within foods, with state of the art tomographic, spectroscopic and texture measurement techniques including X-ray micro-and nano CT, MRI,OCT, NMR, TRS and SRS, and acoustic emission. Nutritional quality (sugar and gluten free cereal products), sensory quality (texture of all foods) and safety (foreign material detection in cereal products) are considered. Online and inline techniques including NMR, MRI, TRS, SRS and X-ray imaging to visualise and monitor structure will be developed.
Resumo:
Los alimentos son sistemas complejos, formados por diversas estructuras a diferentes escalas: macroscópica y microscópica. Muchas propiedades de los alimentos, que son importantes para su procesamiento, calidad y tratamiento postcosecha, están relacionados con su microestructura. La presente tesis doctoral propone una metodología completa para la determinación de la estructura de alimentos desde un punto de vista multi-escala, basándose en métodos de Resonancia Magnética Nuclear (NMR). Las técnicas de NMR son no invasivas y no destructivas y permiten el estudio tanto de macro- como de microestructura. Se han utilizado distintos procedimientos de NMR dependiendo del nivel que se desea estudiar. Para el nivel macroestructural, la Imagen de Resonancia Magnética (MRI) ha resultado ser muy útil para la caracterización de alimentos. Para el estudio microestructural, la MRI requiere altos tiempos de adquisición, lo que hace muy difícil la transferencia de esta técnica a aplicaciones en industria. Por tanto, la optimización de procedimientos de NMR basados en secuencias relaxometría 2D T1/T2 ha resultado ser una estrategia primordial en esta tesis. Estos protocolos de NMR se han implementado satisfactoriamente por primera vez en alto campo magnético. Se ha caracterizado la microestructura de productos alimentarios enteros por primera vez utilizando este tipo de protocolos. Como muestras, se han utilizado dos tipos de productos: modelos de alimentos y alimentos reales (manzanas). Además, como primer paso para su posterior implementación en la industria agroalimentaria, se ha mejorado una línea transportadora, especialmente diseñada para trabajar bajo condiciones de NMR en trabajos anteriores del grupo LPF-TAGRALIA. Se han estudiado y seleccionado las secuencias más rápidas y óptimas para la detección de dos tipos de desórdenes internos en manzanas: vitrescencia y roturas internas. La corrección de las imágenes en movimiento se realiza en tiempo real. Asimismo, se han utilizado protocolos de visión artificial para la clasificación automática de manzanas potencialmente afectadas por vitrescencia. El presente documento está dividido en diferentes capítulos: el Capítulo 2 explica los antecedentes de la presente tesis y el marco del proyecto en el que se ha desarrollado. El Capítulo 3 recoge el estado del arte. El Capítulo 4 establece los objetivos de esta tesis doctoral. Los resultados se dividen en cinco sub-secciones (dentro del Capítulo 5) que corresponden con los trabajos publicados bien en revistas revisadas por pares, bien en congresos internacionales o bien como capítulos de libros revisados por pares. La Sección 5.1. es un estudio del desarrollo de la vitrescencia en manzanas mediante MRI y lo relaciona con la posición de la fruta dentro de la copa del árbol. La Sección 5.2 presenta un trabajo sobre macro- y microestructura en modelos de alimentos. La Sección 5.3 es un artículo en revisión en una revista revisada por pares, en el que se hace un estudio microestrcutural no destructivo mediante relaxometría 2D T1/T2. la Sección 5.4, hace una comparación entre manzanas afectadas por vitrescencia mediante dos técnicas: tomografía de rayos X e MRI, en manzana. Por último, en la Sección 5.5 se muestra un trabajo en el que se hace un estudio de secuencias de MRI en línea para la evaluación de calidad interna en manzanas. Los siguientes capítulos ofrecen una discusión y conclusiones (Capítulo 6 y 7 respectivamente) de todos los capítulos de esta tesis doctoral. Finalmente, se han añadido tres apéndices: el primero con una introducción de los principios básicos de resonancia magnética nuclear (NMR) y en los otros dos, se presentan sendos estudios sobre el efecto de las fibras en la rehidratación de cereales de desayuno extrusionados, mediante diversas técnicas. Ambos trabajos se presentaron en un congreso internacional. Los resultados más relevantes de la presente tesis doctoral, se pueden dividir en tres grandes bloques: resultados sobre macroestructura, resultados sobre microestructura y resultados sobre MRI en línea. Resultados sobre macroestructura: - La imagen de resonancia magnética (MRI) se aplicó satisfactoriamente para la caracterización de macroestructura. En particular, la reconstrucción 3D de imágenes de resonancia magnética permitió identificar y caracterizar dos tipos distintos de vitrescencia en manzanas: central y radial, que se caracterizan por el porcentaje de daño y la conectividad (número de Euler). - La MRI proveía un mejor contraste para manzanas afectadas por vitrescencia que las imágenes de tomografía de rayos X (X-Ray CT), como se pudo verificar en muestras idénticas de manzana. Además, el tiempo de adquisición de la tomografía de rayos X fue alrededor de 12 veces mayor (25 minutos) que la adquisición de las imágenes de resonancia magnética (2 minutos 2 segundos). Resultados sobre microestructura: - Para el estudio de microestructura (nivel subcelular) se utilizaron con éxito secuencias de relaxometría 2D T1/T2. Estas secuencias se usaron por primera vez en alto campo y sobre piezas de alimento completo, convirtiéndose en una forma no destructiva de llevar a cabo estudios de microestructura. - El uso de MRI junto con relaxometría 2D T1/T2 permite realizar estudios multiescala en alimentos de forma no destructiva. Resultados sobre MRI en línea: - El uso de imagen de resonancia magnética en línea fue factible para la identificación de dos tipos de desórdenes internos en manzanas: vitrescencia y podredumbre interna. Las secuencias de imagen tipo FLASH resultaron adecuadas para la identificación en línea de vitrescencia en manzanas. Se realizó sin selección de corte, debido a que la vitrescencia puede desarrollarse en cualquier punto del volumen de la manzana. Se consiguió reducir el tiempo de adquisición, de modo que se llegaron a adquirir 1.3 frutos por segundos (758 ms por fruto). Las secuencias de imagen tipo UFLARE fueron adecuadas para la detección en línea de la podredumbre interna en manzanas. En este caso, se utilizó selección de corte, ya que se trata de un desorden que se suele localizar en la parte central del volumen de la manzana. Se consiguió reducir el tiempo de adquisicón hasta 0.67 frutos por segundo (1475 ms por fruto). En ambos casos (FLASH y UFLARE) fueron necesarios algoritmos para la corrección del movimiento de las imágenes en tiempo real. ABSTRACT Food is a complex system formed by several structures at different scales: macroscopic and microscopic. Many properties of foods that are relevant to process engineering or quality and postharvest treatments are related to their microstructure. This Ph.D Thesis proposes a complete methodology for food structure determination, in a multiscale way, based on the Nuclear Magnetic Resonance (NMR) phenomenon since NMR techniques are non-invasive and non-destructive, and allow both, macro- and micro-structure study. Different NMR procedures are used depending on the structure level under study. For the macrostructure level, Magnetic Resonance Imaging (MRI) revealed its usefulness for food characterization. For microstructure insight, MRI required high acquisition times, which is a hindrance for transference to industry applications. Therefore, optimization of NMR procedures based on T1/T2 relaxometry sequences was a key strategy in this Thesis. These NMR relaxometry protocols, are successfully implemented in high magnetic field. Microstructure of entire food products have been characterized for the first time using these protocols. Two different types of food products have been studied: food models and actual food (apples). Furthermore, as a first step for the food industry implementation, a grading line system, specially designed for working under NMR conditions in previous works of the LPF-TAGRALIA group, is improved. The study and selection of the most suitable rapid sequence to detect two different types of disorders in apples (watercore and internal breakdown) is performed and the real time image motion correction is applied. In addition, artificial vision protocols for the automatic classification of apples potentially affected by watercore are applied. This document is divided into seven different chapters: Chapter 2 explains the thesis background and the framework of the project in which it has been worked. Chapter 3 comprises the state of the art. Chapter 4 establishes de objectives of this Ph.D thesis. The results are divided into five different sections (in Chapter 5) that correspond to published peered reviewed works. Section 5.1 assesses the watercore development in apples with MRI and studies the effect of fruit location in the canopy. Section 5.2 is an MRI and 2D relaxometry study for macro- and microstructure assessment in food models. Section 5.3 is a non-destructive microstructural study using 2D T1/T2 relaxometry on watercore affected apples. Section 5.4 makes a comparison of X-ray CT and MRI on watercore disorder of different apple cultivars. Section 5.5, that is a study of online MRI sequences for the evaluation of apple internal quality. The subsequent chapters offer a general discussion and conclusions (Chapter 6 and Chapter 7 respectively) of all the works performed in the frame of this Ph.D thesis (two peer reviewed journals, one book chapter and one international congress).Finally, three appendices are included in which an introduction to NMR principles is offered and two published proceedings regarding the effect of fiber on the rehydration of extruded breakfast cereal are displayed. The most relevant results can be summarized into three sections: results on macrostructure, results on microstructure and results on on-line MRI. Results on macrostructure: - MRI was successfully used for macrostructure characterization. Indeed, 3D reconstruction of MRI in apples allows to identify two different types of watercore (radial and block), which are characterized by the percentage of damage and the connectivity (Euler number). - MRI provides better contrast for watercore than X-Ray CT as verified on identical samples. Furthermore, X-Ray CT images acquisition time was around 12 times higher (25 minutes) than MRI acquisition time (2 minutes 2 seconds). Results on microstructure: - 2D T1/T2 relaxometry were successfully applied for microstructure (subcellular level) characterization. 2D T1/T2 relaxometry sequences have been applied for the first time on high field for entire food pieces, being a non-destructive way to achieve microstructure study. - The use of MRI together with 2D T1/T2 relaxometry sequences allows a non-destructive multiscale study of food. Results on on-line MRI: - The use of on-line MRI was successful for the identification of two different internal disorders in apples: watercore and internal breakdown. FLASH imaging was a suitable technique for the on-line detection of watercore disorder in apples, with no slice selection, since watercore is a physiological disorder that may be developed anywhere in the apple volume. 1.3 fruits were imaged per second (768 ms per fruit). UFLARE imaging is a suitable sequence for the on-line detection of internal breakdown disorder in apples. Slice selection was used, as internal breakdown is usually located in the central slice of the apple volume. 0.67 fruits were imaged per second (1475 ms per fruit). In both cases (FLASH and UFLARE) motion correction was performed in real time, during the acquisition of the images.
Resumo:
During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.
Resumo:
Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.