5 resultados para METASTABLE DECAY

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GRS Results for the Burnup Pin-cell Benchmark Propagation of Cross-Section, Fission Yields and Decay Data Uncertainties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of nuclear data uncertainties to calculated values is interesting for design purposes and libraries evaluation. XSUSA, developed at GRS, propagates cross section uncertainties to nuclear calculations. In depletion simulations, fission yields and decay data are also involved and suppose a possible source of uncertainty that must be taken into account. We have developed tools to generate varied fission yields and decay libraries and to propagate uncertainties trough depletion in order to complete the XSUSA uncertainty assessment capabilities. A simple test to probe the methodology is defined and discussed.