4 resultados para METABOLIC DISEASES

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa (por ejemplo la obtenida a partir de los alimentos ingeridos) llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Hoy en día la tecnología actual permite abordar el desarrollo del llamado “páncreas endocrino artificial”, que consta de un sensor continuo de glucosa subcutánea, una bomba de infusión subcutánea de insulina y un algoritmo de control en lazo cerrado que calcule la dosis de insulina requerida por el paciente en cada momento, según la medida de glucosa obtenida por el sensor y según unos objetivos. El mayor problema que presentan los sistemas de control en lazo cerrado son los retardos, el sensor de glucosa subcutánea mide la glucosa del líquido intersticial, que representa la que hubo en la sangre un tiempo atrás, por tanto, un cambio en los niveles de glucosa en la sangre, debidos por ejemplo, a una ingesta, tardaría un tiempo en ser detectado por el sensor. Además, una dosis de insulina suministrada al paciente, tarda un tiempo aproximado de 20-30 minutos para la llegar a la sangre. Para evitar trabajar en la medida que sea posible con estos retardos, se intenta predecir cuál será el nivel de glucosa en un futuro próximo, para ello se utilizara un predictor de glucosa subcutánea, con la información disponible de glucosa e insulina. El objetivo del proyecto es diseñar una metodología para estimar el valor futuro de los niveles de glucosa obtenida a partir de un sensor subcutáneo, basada en la identificación recursiva del sistema glucorregulatorio a través de modelos lineales y determinando un horizonte de predicción óptimo de trabajo y analizando la influencia de la insulina en los resultados de la predicción. Se ha implementado un predictor paramétrico basado en un modelo autorregresivo ARX que predice con mejor precisión y con menor RMSE que un predictor ZOH a un horizonte de predicción de treinta minutos. Utilizar información relativa a la insulina no tiene efecto en la predicción. El preprocesado, postprocesado y el tratamiento de la estabilidad tienen un efecto muy beneficioso en la predicción. Diabetes mellitusis a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. Nowadays, the actual technology allows raising the development of the “artificial endocrine pancreas”. It involves a continuous glucose sensor, an insulin bump, and a full closed loop algorithm that calculate the insulin units required by patient at any time, according to the glucose measure obtained by the sensor and any target. The main problem of the full closed loop systems is the delays, the glucose sensor measures the glucose in the interstitial fluid that represents the glucose was in the blood some time ago. Because of this, a change in the glucose in blood would take some time to be detected by the sensor. In addition, insulin units administered by a patient take about 20-30 minutes to reach the blood stream. In order to avoid this effect, it will try to predict the glucose level in the near future. To do that, a subcutaneous glucose predictor is used to predict the future glucose with the information about insulin and glucose. The goal of the proyect is to design a method in order to estimate the future valor of glucose obtained by a subcutaneous sensor. It is based on the recursive identification of the regulatory system through the linear models, determining optimal prediction horizon and analyzing the influence of insuline on the prediction results. A parametric predictor based in ARX autoregressive model predicts with better precision and with lesser RMSE than ZOH predictor in a thirty minutes prediction horizon. Using the relative insulin information has no effect in the prediction. The preprocessing, the postprocessing and the stability treatment have many advantages in the prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Actualmente existen dos tipos de terapias aplicada en tejido subcutáneo: mediante inyección múltiple realizada con plumas, y la otra es mediante infusión continua de insulina por bomba (CSII). El mayor problema de esta terapia son los retardos por la absorción, tanto de los carbohidratos como de la insulina, y los retardos introducidos por el sensor subcutáneo de glucosa que mide la glucosa del líquido intersticial, lo deseable es controlar la glucosa en sangre. Para intentar independizar al paciente de su enfermedad se está trabajando en el desarrollo del páncreas endocrino artificial (PEA) que dotaría al paciente de una bomba de insulina, un sensor de glucosa y un controlador, el cual se encargaría de la toma de decisiones de las infusiones de insulina. Este proyecto persigue el diseño de un regulador en modo de funcionamiento en CL, con el objetivo de conseguir una regulación óptima del nivel de glucosa en sangre. El diseño de dicho regulador va a ser acometido utilizando la teoría del control por modelo interno (IMC). Esta teoría se basa en la idea de que es necesario realimentar la respuesta de un modelo aproximado del proceso que se quiere controlar. La salida del modelo, comparada con la del proceso real nos da la incertidumbre del modelo de la planta, frente a la planta real. Dado que según la teoría del modelo interno, estas diferencias se dan en las altas frecuencias, la teoría IMC propone un filtro paso bajo como regulador en serie con la inversa del modelo de la planta para conseguir el comportamiento deseado. Además se pretende implementar un Predictor Smith para minimizar los efectos del retardo de la medida del sensor. En el proyecto para conseguir la viabilidad del PEA se ha adaptado el controlador IMC clásico utilizando las ganancias estáticas de un modelo de glucosa, a partir de la ruta subcutánea de infusión y la vía subcutánea de medida. El modo de funcionamiento del controlador en SCL mejora el rango de normoglucemia, necesitando la intervención del paciente indicando anticipadamente el momento de las ingestas al controlador. El uso de un control SCL con el Predictor de Smith mejora los resultados pues se añade al controlador una variable sobre las ingestas con la participación del paciente. ABSTRACT. Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, due to the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. There are currently two types of therapies applied in subcutaneous tissue: the first one consists in using the intensive therapy with an insulin pen, and the other one is by continuous subcutaneous insulin infusion (CSII). The biggest problems of this therapy are the delays caused by the absorption of carbohydrates and insulin, and the delays introduced by the subcutaneous glucose sensor that measures glucose from interstitial fluid, it is suitable to control glucose blood. To try to improve these patients quality of life, work is being done on the development of an artificial endocrine pancreas (PEA) consisting of a subcutaneous insulin pump, a subcutaneous glucose sensor and an algorithm of glucose control, which would calculate the bolus that the pump would infuse to patient. This project aims to design a controller for closed-loop therapy, with the objective of obtain an optimal regulation of blood glucose level. The design of this controller will be formed using the theory of internal model control (IMC). This theory is based on the uncertainties given by a model to feedback the system control. Output model, in comparison with the actual process gives the uncertainty of the plant model, compared to the real plant. Since the theory of the internal model, these differences occur at high frequencies, the theory proposes IMC as a low pass filter regulator in series with the inverse model of the plant to get the required behavior. In addition, it will implement a Smith Predictor to minimize the effects of the delay measurement sensor. The project for the viability of PEA has adapted the classic IMC controller using the gains static of glucose model from the subcutaneous infusion and subcutaneous measuring. In simulation the SemiClosed-Loop controller get on the normoglycemia range, requiring patient intervention announce the bolus priming connected to intakes. Using an SCL control with the Smith Predictor improves the outcome because a variable about intakes is added to the controller through patient intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.