4 resultados para MECHANICAL EFFICIENCY
em Universidad Politécnica de Madrid
Resumo:
Transverse galloping is a type of aeroelastic instability characterized by large amplitude, low frequency, normal to wind oscillations that appear in some elastic two-dimensional bluff bodies when subjected to a fluid flow, provided that the flow velocity exceeds a threshold critical value. Such an oscillatory motion is explained because of the energy transfer from the flow to the two-dimensional bluff body. The 7 amount of energy that can be extracted depends on the cross section of the galloping prism. Assuming that the Glauert-Den Hartog quasistatic criterion for galloping instability is satisfied in a first approximation, the suitability of a given cross section for energy harvesting is evaluated by analyzing the lateral aerodynamic force coefficient, fitting a function with a power series in tan a (a being the angle of attack) to 10 available experimental data. In this paper, a fairly large number of simple prisms (triangle, ellipse, biconvex, and rhombus cross sections, as well 11 as D-shaped bodies) is analyzed for suitability as energy harvesters. The influence of the fitting process in the energy harvesting efficiency evaluation is also demonstrated. The analysis shows that the more promising bodies are those with isosceles or approximate isosceles cross sections.
Resumo:
The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure
Resumo:
This paper presents a mechanical actuator for the biomimetic propulsion of swimming devices and the experimental study of the effect of the caudal fin elasticity on the overall performance. The design of the proposed drive allows the DC motor to operate at constant speed, so all the power of the motor is spent only for the motion of the caudal fin. A prototype of the actuator, in which the caudal fin serves as a driving element, is manufactured and tested in both laboratory and natural conditions. The swimming speed, the thrust efficiency and the maneuverability are evaluated for caudal fins with different stiffness. The caudal fin whose rigidity varies relative to both vertical and horizontal cross-section, exhibits the best performance. The achieved results also confirm that the proposed actuator could be of great interest to applications in the field of underwater operation, ocean investigation and environmental protection.
Resumo:
El hormigón autocompactante (HAC) es una nueva tipología de hormigón o material compuesto base cemento que se caracteriza por ser capaz de fluir en el interior del encofrado o molde, llenándolo de forma natural, pasando entre las barras de armadura y consolidándose únicamente bajo la acción de su peso propio, sin ayuda de medios de compactación externos, y sin que se produzca segregación de sus componentes. Debido a sus propiedades frescas (capacidad de relleno, capacidad de paso, y resistencia a la segregación), el HAC contribuye de forma significativa a mejorar la calidad de las estructuras así como a abrir nuevos campos de aplicación del hormigón. Por otra parte, la utilidad del hormigón reforzado con fibras de acero (HRFA) es hoy en día incuestionable debido a la mejora significativa de sus propiedades mecánicas tales como resistencia a tracción, tenacidad, resistencia al impacto o su capacidad para absorber energía. Comparado con el HRFA, el hormigón autocompactante reforzado con fibras de acero (HACRFA) presenta como ventaja una mayor fluidez y cohesión ofreciendo, además de unas buenas propiedades mecánicas, importantes ventajas en relación con su puesta en obra. El objetivo global de esta tesis doctoral es el desarrollo de nuevas soluciones estructurales utilizando materiales compuestos base cemento autocompactantes reforzados con fibras de acero. La tesis presenta una nueva forma de resolver el problema basándose en el concepto de los materiales gradiente funcionales (MGF) o materiales con función gradiente (MFG) con el fin de distribuir de forma eficiente las fibras en la sección estructural. Para ello, parte del HAC se sustituye por HACRFA formando capas que presentan una transición gradual entre las mismas con el fin de obtener secciones robustas y exentas de tensiones entre capas con el fin de aplicar el concepto “MGF-laminados” a elementos estructurales tales como vigas, columnas, losas, etc. El proceso incluye asimismo el propio método de fabricación que, basado en la tecnología HAC, permite el desarrollo de interfases delgadas y robustas entre capas (1-3 mm) gracias a las propiedades reológicas del material. Para alcanzar dichos objetivos se ha llevado a cabo un amplio programa experimental cuyas etapas principales son las siguientes: • Definir y desarrollar un método de diseño que permita caracterizar de forma adecuada las propiedades mecánicas de la “interfase”. Esta primera fase experimental incluye: o las consideraciones generales del propio método de fabricación basado en el concepto de fabricación de materiales gradiente funcionales denominado “reología y gravedad”, o las consideraciones específicas del método de caracterización, o la caracterización de la “interfase”. • Estudiar el comportamiento mecánico sobre elementos estructurales, utilizando distintas configuraciones de MGF-laminado frente a acciones tanto estáticas como dinámicas con el fin de comprobar la viabilidad del material para ser usado en elementos estructurales tales como vigas, placas, pilares, etc. Los resultados indican la viabilidad de la metodología de fabricación adoptada, así como, las ventajas tanto estructurales como en reducción de costes de las soluciones laminadas propuestas. Es importante destacar la mejora en términos de resistencia a flexión, compresión o impacto del hormigón autocompactante gradiente funcional en comparación con soluciones de HACRFA monolíticos inclusos con un volumen neto de fibras (Vf) doble o superior. Self-compacting concrete (SCC) is an important advance in the concrete technology in the last decades. It is a new type of high performance concrete with the ability of flowing under its own weight and without the need of vibrations. Due to its specific fresh or rheological properties, such as filling ability, passing ability and segregation resistance, SCC may contribute to a significant improvement of the quality of concrete structures and open up new field for the application of concrete. On the other hand, the usefulness of steel fibre-reinforced concrete (SFRC) in civil engineering applications is unquestionable. SFRC can improve significantly the hardened mechanical properties such as tensile strength, impact resistance, toughness and energy absorption capacity. Compared to SFRC, self-compacting steel fibre-reinforced concrete (SCSFRC) is a relatively new type of concrete with high flowability and good cohesiveness. SCSFRC offers very attractive economical and technical benefits thanks to SCC rheological properties, which can be further extended, when combined with SFRC for improving their mechanical characteristics. However, for the different concrete structural elements, a single concrete mix is selected without an attempt to adapt the diverse fibre-reinforced concretes to the stress-strain sectional properly. This thesis focused on the development of high performance cement-based structural composites made of SCC with and without steel fibres, and their applications for enhanced mechanical properties in front of different types of load and pattern configurations. It presents a new direction for tackling the mechanical problem. The approach adopted is based on the concept of functionally graded cementitious composite (FGCC) where part of the plain SCC is strategically replaced by SCSFRC in order to obtain laminated functionally graded self-compacting cementitious composites, laminated-FGSCC, in single structural elements as beams, columns, slabs, etc. The approach also involves a most suitable casting method, which uses SCC technology to eliminate the potential sharp interlayer while easily forming a robust and regular reproducible graded interlayer of 1-3 mm by controlling the rheology of the mixes and using gravity at the same time to encourage the use of the powerful concept for designing more performance suitable and cost-efficient structural systems. To reach the challenging aim, a wide experimental programme has been carried out involving two main steps: • The definition and development of a novel methodology designed for the characterization of the main parameter associated to the interface- or laminated-FGSCC solutions: the graded interlayer. Work of this first part includes: o the design considerations of the innovative (in the field of concrete) production method based on “rheology and gravity” for producing FG-SCSFRC or as named in the thesis FGSCC, casting process and elements, o the design of a specific testing methodology, o the characterization of the interface-FGSCC by using the so designed testing methodology. • The characterization of the different medium size FGSCC samples under different static and dynamic loads patterns for exploring their possibilities to be used for structural elements as beams, columns, slabs, etc. The results revealed the efficiency of the manufacturing methodology, which allow creating robust structural sections, as well as the feasibility and cost effectiveness of the proposed FGSCC solutions for different structural uses. It is noticeable to say the improvement in terms of flexural, compressive or impact loads’ responses of the different FGSCC in front of equal strength class SCSFRC bulk elements with at least the double of overall net fibre volume fraction (Vf).