85 resultados para MDD. OWL-S. Semantic Web services. UML profile. Semantic Web
em Universidad Politécnica de Madrid
Resumo:
Los servicios en red que conocemos actualmente están basados en documentos y enlaces de hipertexto que los relacionan entre sí sin aportar verdadera información acerca de los contenidos que representan. Podría decirse que se trata de “una red diseñada por personas para ser interpretada por personas”. El objetivo principal de los últimos años es encaminar esta red hacia una web de conocimiento, en la que la información pueda ser interpretada por agentes computerizados de manera automática. Para llevar a cabo esta transformación es necesaria la utilización de nuevas tecnologías especialmente diseñadas para la descripción de contenidos como son las ontologías. Si bien las redes convencionales están evolucionando, no son las únicas que lo están haciendo. El rápido crecimiento de las redes de sensores y el importante aumento en el número de dispositivos conectados a internet, hace necesaria la incorporación de tecnologías de la web semántica a este tipo de redes. Para la realización de este Proyecto de Fin de Carrera se utilizará la ontología SSN, diseñada para la descripción semántica de sensores y las redes de las que forman parte con el fin de permitir una mejor interacción entre los dispositivos y los sistemas que hacen uso de ellos. El trabajo desarrollado a lo largo de este Proyecto de Fin de Carrera gira en torno a esta ontología, siendo el principal objetivo la generación semiautomática de código a partir de un modelo de sistemas descrito en función de las clases y propiedades proporcionadas por SSN. Para alcanzar este fin se dividirá el proyecto en varias partes. Primero se realizará un análisis de la ontología mencionada. A continuación se describirá un sistema simulado de sensores y por último se implementarán las aplicaciones para la generación automática de interfaces y la representación gráfica de los dispositivos del sistema a partir de la representación del éste en un fichero de tipo OWL. ABSTRACT. The web we know today is based on documents and hypertext links that relate these documents with each another, without providing consistent information about the contents they represent. It could be said that its a network designed by people to be used by people. The main goal of the last couple of years is to guide this network into a web of knowledge, where information can be automatically processed by machines. This transformation, requires the use of new technologies specially designed for content description such as ontologies. Nowadays, conventional networks are not the only type of networks evolving. The use of sensor networks and the number of sensor devices connected to the Internet is rapidly increasing, making the use the integration of semantic web technologies to this kind of networks completely necessary. The SSN ontology will be used for the development of this Final Degree Dissertation. This ontology was design to semantically describe sensors and the networks theyre part of, allowing a better interaction between devices and the systems that use them. The development carried through this Final Degree Dissertation revolves around this ontology and aims to achieve semiautomatic code generation starting from a system model described based on classes and properties provided by SSN. To reach this goal, de Dissertation will be divided in several parts. First, an analysis about the mentioned ontology will be made. Following this, a simulated sensor system will be described, and finally, the implementation of the applications will take place. One of these applications will automatically generate de interfaces and the other one will graphically represents the devices in the sensor system, making use of the system representation in an OWL file.
Resumo:
This PhD thesis contributes to the problem of resource and service discovery in the context of the composable web. In the current web, mashup technologies allow developers reusing services and contents to build new web applications. However, developers face a problem of information flood when searching for appropriate services or resources for their combination. To contribute to overcoming this problem, a framework is defined for the discovery of services and resources. In this framework, three levels are defined for performing discovery at content, discovery and agente levels. The content level involves the information available in web resources. The web follows the Representational Stateless Transfer (REST) architectural style, in which resources are returned as representations from servers to clients. These representations usually employ the HyperText Markup Language (HTML), which, along with Content Style Sheets (CSS), describes the markup employed to render representations in a web browser. Although the use of SemanticWeb standards such as Resource Description Framework (RDF) make this architecture suitable for automatic processes to use the information present in web resources, these standards are too often not employed, so automation must rely on processing HTML. This process, often referred as Screen Scraping in the literature, is the content discovery according to the proposed framework. At this level, discovery rules indicate how the different pieces of data in resources’ representations are mapped onto semantic entities. By processing discovery rules on web resources, semantically described contents can be obtained out of them. The service level involves the operations that can be performed on the web. The current web allows users to perform different tasks such as search, blogging, e-commerce, or social networking. To describe the possible services in RESTful architectures, a high-level feature-oriented service methodology is proposed at this level. This lightweight description framework allows defining service discovery rules to identify operations in interactions with REST resources. The discovery is thus performed by applying discovery rules to contents discovered in REST interactions, in a novel process called service probing. Also, service discovery can be performed by modelling services as contents, i.e., by retrieving Application Programming Interface (API) documentation and API listings in service registries such as ProgrammableWeb. For this, a unified model for composable components in Mashup-Driven Development (MDD) has been defined after the analysis of service repositories from the web. The agent level involves the orchestration of the discovery of services and contents. At this level, agent rules allow to specify behaviours for crawling and executing services, which results in the fulfilment of a high-level goal. Agent rules are plans that allow introspecting the discovered data and services from the web and the knowledge present in service and content discovery rules to anticipate the contents and services to be found on specific resources from the web. By the definition of plans, an agent can be configured to target specific resources. The discovery framework has been evaluated on different scenarios, each one covering different levels of the framework. Contenidos a la Carta project deals with the mashing-up of news from electronic newspapers, and the framework was used for the discovery and extraction of pieces of news from the web. Similarly, in Resulta and VulneraNET projects the discovery of ideas and security knowledge in the web is covered, respectively. The service level is covered in the OMELETTE project, where mashup components such as services and widgets are discovered from component repositories from the web. The agent level is applied to the crawling of services and news in these scenarios, highlighting how the semantic description of rules and extracted data can provide complex behaviours and orchestrations of tasks in the web. The main contributions of the thesis are the unified framework for discovery, which allows configuring agents to perform automated tasks. Also, a scraping ontology has been defined for the construction of mappings for scraping web resources. A novel first-order logic rule induction algorithm is defined for the automated construction and maintenance of these mappings out of the visual information in web resources. Additionally, a common unified model for the discovery of services is defined, which allows sharing service descriptions. Future work comprises the further extension of service probing, resource ranking, the extension of the Scraping Ontology, extensions of the agent model, and contructing a base of discovery rules. Resumen La presente tesis doctoral contribuye al problema de descubrimiento de servicios y recursos en el contexto de la web combinable. En la web actual, las tecnologías de combinación de aplicaciones permiten a los desarrolladores reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a todo, los desarrolladores afrontan un problema de saturación de información a la hora de buscar servicios o recursos apropiados para su combinación. Para contribuir a la solución de este problema, se propone un marco de trabajo para el descubrimiento de servicios y recursos. En este marco, se definen tres capas sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente. El nivel de contenido involucra a la información disponible en recursos web. La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en el que los recursos son devueltos como representaciones por parte de los servidores a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado HyperText Markup Language (HTML), que, unido al estándar Content Style Sheets (CSS), describe el marcado empleado para mostrar representaciones en un navegador web. Aunque el uso de estándares de la web semántica como Resource Description Framework (RDF) hace apta esta arquitectura para su uso por procesos automatizados, estos estándares no son empleados en muchas ocasiones, por lo que cualquier automatización debe basarse en el procesado del marcado HTML. Este proceso, normalmente conocido como Screen Scraping en la literatura, es el descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel, un conjunto de reglas de descubrimiento indican cómo los diferentes datos en las representaciones de recursos se corresponden con entidades semánticas. Al procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos semánticamente. El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posibles servicios en arquitecturas REST, se propone en este nivel una metodología de alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco de descubrimiento ligero permite definir reglas de descubrimiento de servicios para identificar operaciones en interacciones con recursos REST. Este descubrimiento es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo mediante el modelado de servicios como contenidos. Es decir, mediante la recuperación de documentación de Application Programming Interfaces (APIs) y listas de APIs en registros de servicios como ProgrammableWeb. Para ello, se ha definido un modelo unificado de componentes combinables para Mashup-Driven Development (MDD) tras el análisis de repositorios de servicios de la web. El nivel de agente involucra la orquestación del descubrimiento de servicios y contenidos. En este nivel, las reglas de nivel de agente permiten especificar comportamientos para el rastreo y ejecución de servicios, lo que permite la consecución de metas de mayor nivel. Las reglas de los agentes son planes que permiten la introspección sobre los datos y servicios descubiertos, así como sobre el conocimiento presente en las reglas de descubrimiento de servicios y contenidos para anticipar contenidos y servicios por encontrar en recursos específicos de la web. Mediante la definición de planes, un agente puede ser configurado para descubrir recursos específicos. El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta trata de la combinación de noticias de periódicos digitales, y en él el framework se ha empleado para el descubrimiento y extracción de noticias de la web. De manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes combinables como servicios y widgets se descubren en repositorios de componentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias en estos escenarios, mostrando cómo la descripción semántica de reglas y datos extraídos permiten proporcionar comportamientos complejos y orquestaciones de tareas en la web. Las principales contribuciones de la tesis son el marco de trabajo unificado para descubrimiento, que permite configurar agentes para realizar tareas automatizadas. Además, una ontología de extracción ha sido definida para la construcción de correspondencias y extraer información de recursos web. Asimismo, un algoritmo para la inducción de reglas de lógica de primer orden se ha definido para la construcción y el mantenimiento de estas correspondencias a partir de la información visual de recursos web. Adicionalmente, se ha definido un modelo común y unificado para el descubrimiento de servicios que permite la compartición de descripciones de servicios. Como trabajos futuros se considera la extensión del sondeo de servicios, clasificación de recursos, extensión de la ontología de extracción y la construcción de una base de reglas de descubrimiento.
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
In spite of the increasing presence of Semantic Web Facilities, only a limited amount of the available resources in the Internet provide a semantic access. Recent initiatives such as the emerging Linked Data Web are providing semantic access to available data by porting existing resources to the semantic web using different technologies, such as database-semantic mapping and scraping. Nevertheless, existing scraping solutions are based on ad-hoc solutions complemented with graphical interfaces for speeding up the scraper development. This article proposes a generic framework for web scraping based on semantic technologies. This framework is structured in three levels: scraping services, semantic scraping model and syntactic scraping. The first level provides an interface to generic applications or intelligent agents for gathering information from the web at a high level. The second level defines a semantic RDF model of the scraping process, in order to provide a declarative approach to the scraping task. Finally, the third level provides an implementation of the RDF scraping model for specific technologies. The work has been validated in a scenario that illustrates its application to mashup technologies
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
In this introductory chapter we put in context and give a brief outline of the work that we thoroughly present in the rest of the dissertation. We consider this work divided in two main parts. The first part is the Firenze Framework, a knowledge level description framework rich enough to express the semantics required for describing both semantic Web services and semantic Grid services. We start by defining what the Semantic Grid is and its relation with the Semantic Web; and the possibility of their convergence since both initiatives have become mainly service-oriented. We also introduce the main motivators of the creation of this framework, one is to provide a valid description framework that works at knowledge level; the other to provide a description framework that takes into account the characteristics of Grid services in order to be able to describe them properly. The other part of the dissertation is devoted to Vega, an event-driven architecture that, by means of proposed knowledge level description framework, is able to achieve high scale provisioning of knowledge-intensive services. In this introductory chapter we portrait the anatomy of a generic event-driven architecture, and we briefly enumerate their main characteristics, which are the reason that make them our choice.
Resumo:
In this paper the authors present an approach for the semantic annotation of RESTful services in the geospatial domain. Their approach automates some stages of the annotation process, by using a combination of resources and services: a cross-domain knowledge base like DBpedia, two domain ontologies like GeoNames and the WGS84 vocabulary, and suggestion and synonym services. The authors’ approach has been successfully evaluated with a set of geospatial RESTful services obtained from ProgrammableWeb.com, where geospatial services account for a third of the total amount of services available in this registry.
Resumo:
Actualmente, la Web provee un inmenso conjunto de servicios (WS-*, RESTful, OGC WFS), los cuales están normalmente expuestos a través de diferentes estándares que permiten localizar e invocar a estos servicios. Estos servicios están, generalmente, descritos utilizando información textual, sin una descripción formal, es decir, la descripción de los servicios es únicamente sintáctica. Para facilitar el uso y entendimiento de estos servicios, es necesario anotarlos de manera formal a través de la descripción de los metadatos. El objetivo de esta tesis es proponer un enfoque para la anotación semántica de servicios Web en el dominio geoespacial. Este enfoque permite automatizar algunas de las etapas del proceso de anotación, mediante el uso combinado de recursos ontológicos y servicios externos. Este proceso ha sido evaluado satisfactoriamente con un conjunto de servicios en el dominio geoespacial. La contribución principal de este trabajo es la automatización parcial del proceso de anotación semántica de los servicios RESTful y WFS, lo cual mejora el estado del arte en esta área. Una lista detallada de las contribuciones son: • Un modelo para representar servicios Web desde el punto de vista sintáctico y semántico, teniendo en cuenta el esquema y las instancias. • Un método para anotar servicios Web utilizando ontologías y recursos externos. • Un sistema que implementa el proceso de anotación propuesto. • Un banco de pruebas para la anotación semántica de servicios RESTful y OGC WFS. Abstract The Web contains an immense collection of Web services (WS-*, RESTful, OGC WFS), normally exposed through standards that tell us how to locate and invocate them. These services are usually described using mostly textual information and without proper formal descriptions, that is, existing service descriptions mostly stay on a syntactic level. If we want to make such services potentially easier to understand and use, we may want to annotate them formally, by means of descriptive metadata. The objective of this thesis is to propose an approach for the semantic annotation of services in the geospatial domain. Our approach automates some stages of the annotation process, by using a combination of thirdparty resources and services. It has been successfully evaluated with a set of geospatial services. The main contribution of this work is the partial automation of the process of RESTful and WFS semantic annotation services, what improves the current state of the art in this area. The more detailed list of contributions are: • A model for representing Web services. • A method for annotating Web services using ontological and external resources. • A system that implements the proposed annotation process. • A gold standard for the semantic annotation of RESTful and OGC WFS services, and algorithms for evaluating the annotations.
Resumo:
This paper presents a Focused Crawler in order to Get Semantic Web Resources (CSR). Structured data web are available in formats such as Extensible Markup Language (XML), Resource Description Framework (RDF) and Ontology Web Language (OWL) that can be used for processing. One of the main challenges for performing a manual search and download semantic web resources is that this task consumes a lot of time. Our research work propose a focused crawler which allow to download these resources automatically and store them on disk in order to have a collection that will be used for data processing. CRS consists of three layers: (a) The User Interface Layer, (b) The Focus Crawler Layer and (c) The Base Crawler Layer. CSR uses as a selection policie the Shark-Search method. CSR was conducted with two experiments. The first one starts on December 15 2012 at 7:11 am and ends on December 16 2012 at 4:01 were obtained 448,123,537 bytes of data. The CSR ends by itself after to analyze 80,4375 seeds with an unlimited depth. CSR got 16,576 semantic resources files where the 89 % was RDF, the 10 % was XML and the 1% was OWL. The second one was based on the Web Data Commons work of the Research Group Data and Web Science at the University of Mannheim and the Institute AIFB at the Karlsruhe Institute of Technology. This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013. After 162.51 hours of execution the result was 285,279 semantic resources where predominated the XML resources with 99 % and OWL and RDF with 1 % each one.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction
Resumo:
Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction.
Resumo:
The Web has witnessed an enormous growth in the amount of semantic information published in recent years. This growth has been stimulated to a large extent by the emergence of Linked Data. Although this brings us a big step closer to the vision of a Semantic Web, it also raises new issues such as the need for dealing with information expressed in different natural languages. Indeed, although the Web of Data can contain any kind of information in any language, it still lacks explicit mechanisms to automatically reconcile such information when it is expressed in different languages. This leads to situations in which data expressed in a certain language is not easily accessible to speakers of other languages. The Web of Data shows the potential for being extended to a truly multilingual web as vocabularies and data can be published in a language-independent fashion, while associated language-dependent (linguistic) information supporting the access across languages can be stored separately. In this sense, the multilingual Web of Data can be realized in our view as a layer of services and resources on top of the existing Linked Data infrastructure adding i) linguistic information for data and vocabularies in different languages, ii) mappings between data with labels in different languages, and iii) services to dynamically access and traverse Linked Data across different languages. In this article we present this vision of a multilingual Web of Data. We discuss challenges that need to be addressed to make this vision come true and discuss the role that techniques such as ontology localization, ontology mapping, and cross-lingual ontology-based information access and presentation will play in achieving this. Further, we propose an initial architecture and describe a roadmap that can provide a basis for the implementation of this vision.
Resumo:
Lexica and terminology databases play a vital role in many NLP applications, but currently most such resources are published in application-specific formats, or with custom access interfaces, leading to the problem that much of this data is in ‘‘data silos’’ and hence difficult to access. The Semantic Web and in particular the Linked Data initiative provide effective solutions to this problem, as well as possibilities for data reuse by inter-lexicon linking, and incorporation of data categories by dereferencable URIs. The Semantic Web focuses on the use of ontologies to describe semantics on the Web, but currently there is no standard for providing complex lexical information for such ontologies and for describing the relationship between the lexicon and the ontology. We present our model, lemon, which aims to address these gaps
Resumo:
Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.