8 resultados para Método das diferenças finitas
em Universidad Politécnica de Madrid
Resumo:
Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.
Resumo:
En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.
Resumo:
En este trabajo se presenta la implantación del método SIMPLET en un programa de elementos finitos basados en volúmenes de control. Este método toma en cuanta las variaciones de temperatura en la determinación del campo de presiones en problemas de convección libre, con el próposito de acelerar la convergencia y disminuir los tiempos de computación. El método SIMPLET, que originalmente ha sido propuesto en base al método de diferencias finitas con mallas desplazadas, se implementó en un programa de elementos finitos basados en volúmenes de control con mallas no desplazadas. Se resolvió un problema de convección libre en una cavidad cuadrada y los resultados obtenidos en términos del número de iteracciones y tiempo de computación se compararon se compararon con los resultados del método SIMPLE. Los resultados muestran que en este tipo de problemas el método SIMPLET es más rápido que le SIMPLE cuando el número de Rayleigh es bajo, mientras que para números de Rayleigh elevados, el desempeño de ambos métodos es similar.
Resumo:
La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.
Resumo:
En este estudio se ha realizado el diseño de un receptor de una central de Torre Central de energía solar para generación directa de vapor, mediante el uso de métodos numéricos, con un perfil de potencia incidente variable longitudinal y transversalmente. Para ello se ha dividido la geometría del receptor según el método de diferencias finitas, y se ha procedido a resolver las ecuaciones del balance de energía. Una vez resuelto el sistema de ecuaciones se dispone de la distribución de temperaturas en el receptor y se puede proceder a analizar los resultados así como a calcular otros datos de interés. ABSTRACT In this study it has been made a Central Receiver Solar Thermal Power Plant’s Receiver design for direct steam production, by using numerical methods, with a variable longitudinally and transversely income solar power profile. With this propose, the receiver’s geometry has been divided using the finite difference method, and the energy balance equations have been solved. Once the equations system has been solved, the receiver´s temperature distribution is known, and you can analyze the results as well as calculate other interesting data.
Resumo:
Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.
Resumo:
El objetivo de este trabajo se centra en la formulación clásica del método de los elementos finitos y dentro de ella, únicamente en un aspecto todavía no bien estudiado: su exactitud. En opinión del autor, la complejidad de este estudio, en el estado actual de conocimientos, motiva que aquel no sea susceptible de un planteamiento general. Por esta razón, ha parecido conveniente la consideración de un caso estructural muy simple -la columna de sección variable-, correspondiente a un problema en elementos finitos - de clase C0, que, sin embargo, permite, por un lado, su extensión a situaciones estructurales análogas (problemas de torsión, membranas de revolución, bandas finitas, etc.), sin apenas modificación conceptual, y, por otra parte, aportar indicaciones sobre las posibilidades de llevar a cabo un análisis paralelo en elementos y estructuras más complejos, bien en mayor dimensión (estructuras 2-D y 3-D), bien en requerimientos de continuidad más elevada (estructuras de flexión, tipo c1 , etc.).
Resumo:
Se ha desarrollado un modelo implícito no lineal 2-D en EF para la resolución de las ecuaciones de aguas poco profundas. La discretización espacial se ha realizado por medio de elementos lagrangianos isoparamétricos. Se ha aplicado la integración numérica de Simpson para obtener las matrices elementales, y para la integración temporal se han utilizado diferentes esquemas en diferencias finitas, comprobándose el modelo con diferentes ejemplos.