3 resultados para Mélange de distributions khi-deux non centrées

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les méthodes d'optimisation statiques(c'est-a-dire des systemes dont les parametres n'.évoluent pas avec le temps) peuvent se diviser en deux grandes classes : les méthodes directes et les méthodes indirectes. Les premieres ocalisent le vecteur optimum par des mouvements tratégiques dans l'espace correspondant. Elles nécessitent la connaissance de la valeur de la fonction critere a chaque point, mais non la forme algébrique, ni ses dérivées.