14 resultados para Logical Inference

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an analysis for detecting procedures and goals that are deterministic (i.e., that produce at most one solution at most once),or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic. The analysis takes advantage of the pruning operator in order to improve the detection of mutual exclusion and determinacy. It also supports arithmetic equations and disequations, as well as equations and disequations on terms,for which we give a complete satisfiability testing algorithm, w.r.t. available type information. Information about determinacy can be used for program debugging and optimization, resource consumption and granularity control, abstraction carrying code, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When mapping is formulated in a Bayesian framework, the need of specifying a prior for the environment arises naturally. However, so far, the use of a particular structure prior has been coupled to working with a particular representation. We describe a system that supports inference with multiple priors while keeping the same dense representation. The priors are rigorously described by the user in a domain-specific language. Even though we work very close to the measurement space, we are able to represent structure constraints with the same expressivity as methods based on geometric primitives. This approach allows the intrinsic degrees of freedom of the environment’s shape to be recovered. Experiments with simulated and real data sets will be presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of data and activities in business processes can be used to greatly facilítate several relevant tasks performed at design- and run-time, such as fragmentation, compliance checking, or top-down design. Business processes are often described using workflows. We present an approach for mechanically inferring business domain-specific attributes of workflow components (including data Ítems, activities, and elements of sub-workflows), taking as starting point known attributes of workflow inputs and the structure of the workflow. We achieve this by modeling these components as concepts and applying sharing analysis to a Horn clause-based representation of the workflow. The analysis is applicable to workflows featuring complex control and data dependencies, embedded control constructs, such as loops and branches, and embedded component services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract interpretation-based data-flow analysis of logic programs is at this point relatively well understood from the point of view of general frameworks and abstract domains. On the other hand, comparatively little attention has been given to the problems which arise when analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions to these problems have been proposed to date. Such problems relate to dealing correctly with all builtins, including meta-logical and extra-logical predicates, with dynamic predicates (where the program is modified during execution), and with the absence of certain program text during compilation. Existing proposals for dealing with such issues generally restrict in one way or another the classes of programs which can be analyzed if the information from analysis is to be used for program optimization. This paper attempts to fill this gap by considering a full dialect of Prolog, essentially following the recently proposed ISO standard, pointing out the problems that may arise in the analysis of such a dialect, and proposing a combination of known and novel solutions that together allow the correct analysis of arbitrary programs using the full power of the language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RDB2RDF systems generate RDF from relational databases, operating in two dierent manners: materializing the database content into RDF or acting as virtual RDF datastores that transform SPARQL queries into SQL. In the former, inferences on the RDF data (taking into account the ontologies that they are related to) are normally done by the RDF triple store where the RDF data is materialised and hence the results of the query answering process depend on the store. In the latter, existing RDB2RDF systems do not normally perform such inferences at query time. This paper shows how the algorithm used in the REQUIEM system, focused on handling run-time inferences for query answering, can be adapted to handle such inferences for query answering in combination with RDB2RDF systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RDB2RDF systems generate RDF from relational databases, operating in two di�erent manners: materializing the database content into RDF or acting as virtual RDF datastores that transform SPARQL queries into SQL. In the former, inferences on the RDF data (taking into account the ontologies that they are related to) are normally done by the RDF triple store where the RDF data is materialised and hence the results of the query answering process depend on the store. In the latter, existing RDB2RDF systems do not normally perform such inferences at query time. This paper shows how the algorithm used in the REQUIEM system, focused on handling run-time inferences for query answering, can be adapted to handle such inferences for query answering in combination with RDB2RDF systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La computación molecular es una disciplina que se ocupa del diseño e implementación de dispositivos para el procesamiento de información sobre un sustrato biológico, como el ácido desoxirribonucleico (ADN), el ácido ribonucleico (ARN) o las proteínas. Desde que Watson y Crick descubrieron en los años cincuenta la estructura molecular del ADN en forma de doble hélice, se desencadenaron otros descubrimientos, como las enzimas de restricción o la reacción en cadena de la polimerasa (PCR), contribuyendo de manera determinante a la irrupción de la tecnología del ADN recombinante. Gracias a esta tecnología y al descenso vertiginoso de los precios de secuenciación y síntesis del ADN, la computación biomolecular pudo abandonar su concepción puramente teórica. El trabajo presentado por Adleman (1994) logró resolver un problema de computación NP-completo (El Problema del Camino de Hamilton dirigido) utilizando únicamente moléculas de ADN. La gran capacidad de procesamiento en paralelo ofrecida por las técnicas del ADN recombinante permitió a Adleman ser capaz de resolver dicho problema en tiempo polinómico, aunque a costa de un consumo exponencial de moléculas de ADN. Utilizando algoritmos de fuerza bruta similares al utilizado por Adleman se logró resolver otros problemas NP-completos, como por ejemplo el de Satisfacibilidad de Fórmulas Lógicas / SAT (Lipton, 1995). Pronto se comprendió que la computación biomolecular no podía competir en velocidad ni precisión con los ordenadores de silicio, por lo que su enfoque y objetivos se centraron en la resolución de problemas con aplicación biomédica (Simmel, 2007), dejando de lado la resolución de problemas clásicos de computación. Desde entonces se han propuesto diversos modelos de dispositivos biomoleculares que, de forma autónoma (sin necesidad de un bio-ingeniero realizando operaciones de laboratorio), son capaces de procesar como entrada un sustrato biológico y proporcionar una salida también en formato biológico: procesadores que aprovechan la extensión de la polimerasa (Hagiya et al., 1997), autómatas que funcionan con enzimas de restricción (Benenson et al., 2001) o con deoxiribozimas (Stojanovic et al., 2002), o circuitos de hibridación competitiva (Yurke et al., 2000). Esta tesis presenta un conjunto de modelos de dispositivos de ácidos nucleicos capaces de implementar diversas operaciones de computación lógica aprovechando técnicas de computación biomolecular (hibridación competitiva del ADN y reacciones enzimáticas) con aplicaciones en diagnóstico genético. El primer conjunto de modelos, presentados en el Capítulo 5 y publicados en Sainz de Murieta and Rodríguez-Patón (2012b), Rodríguez-Patón et al. (2010a) y Sainz de Murieta and Rodríguez-Patón (2010), define un tipo de biosensor que usa hebras simples de ADN para codificar reglas sencillas, como por ejemplo "SI hebra-ADN-1 Y hebra-ADN-2 presentes, ENTONCES enfermedad-B". Estas reglas interactúan con señales de entrada (ADN o ARN de cualquier tipo) para producir una señal de salida (también en forma de ácido nucleico). Dicha señal de salida representa un diagnóstico, que puede medirse mediante partículas fluorescentes técnicas FRET) o incluso ser un tratamiento administrado en respuesta a un conjunto de síntomas. El modelo presentado en el Capítulo 5, publicado en Rodríguez-Patón et al. (2011), es capaz de ejecutar cadenas de resolución sobre fórmulas lógicas en forma normal conjuntiva. Cada cláusula de una fórmula se codifica en una molécula de ADN. Cada proposición p se codifica asignándole una hebra simple de ADN, y la correspondiente hebra complementaria a la proposición ¬p. Las cláusulas se codifican incluyendo distintas proposiciones en la misma hebra de ADN. El modelo permite ejecutar programas lógicos de cláusulas Horn aplicando múltiples iteraciones de resolución en cascada, con el fin de implementar la función de un nanodispositivo autónomo programable. Esta técnica también puede emplearse para resolver SAP sin ayuda externa. El modelo presentado en el Capítulo 6 se ha publicado en publicado en Sainz de Murieta and Rodríguez-Patón (2012c), y el modelo presentado en el Capítulo 7 se ha publicado en (Sainz de Murieta and Rodríguez-Patón, 2013c). Aunque explotan métodos de computación biomolecular diferentes (hibridación competitiva de ADN en el Capítulo 6 frente a reacciones enzimáticas en el 7), ambos modelos son capaces de realizar inferencia Bayesiana. Funcionan tomando hebras simples de ADN como entrada, representando la presencia o la ausencia de un indicador molecular concreto (una evidencia). La probabilidad a priori de una enfermedad, así como la probabilidad condicionada de una señal (o síntoma) dada la enfermedad representan la base de conocimiento, y se codifican combinando distintas moléculas de ADN y sus concentraciones relativas. Cuando las moléculas de entrada interaccionan con las de la base de conocimiento, se liberan dos clases de hebras de ADN, cuya proporción relativa representa la aplicación del teorema de Bayes: la probabilidad condicionada de la enfermedad dada la señal (o síntoma). Todos estos dispositivos pueden verse como elementos básicos que, combinados modularmente, permiten la implementación de sistemas in vitro a partir de sensores de ADN, capaces de percibir y procesar señales biológicas. Este tipo de autómatas tienen en la actualidad una gran potencial, además de una gran repercusión científica. Un perfecto ejemplo fue la publicación de (Xie et al., 2011) en Science, presentando un autómata biomolecular de diagnóstico capaz de activar selectivamente el proceso de apoptosis en células cancerígenas sin afectar a células sanas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Framework Lógico de Edimburgo ha demostrado ser una poderosa herramienta en el estudio formal de sistemas deductivos, como por ejemplo lenguajes de programación. Sin embargo su principal implementación, el sistema Twelf, carece de expresividad, obligando al programador a escribir código repetitivo. Este proyecto presenta una manera alternativa de utilizar Twelf: a través de un EDSL (Lenguaje Embebido de Dominio Específico) en Scala que permite representar firmas del Framework Lógico, y apoyándonos en Twelf como backend para la verificación, abrimos la puerta a diversas posibilidades en términos de metaprogramación. El código fuente, así como instrucciones para instalar y configurar, está accesible en https://github.com/akathorn/elfcala. ---ABSTRACT---The Edinburgh Logical Framework has proven to be to be a powerful tool in the formal study of deductive systems, such as programming languages. However, its main implementation, the Twelf system, lacks expressiveness, requiring the programmer to write repetitive code. This project presents an alternative way of using Twelf: by providing a Scala EDSL (Embedded Domain Specific Language) that can encode Logical Framework signatures and relying on Twelf as a backend for the verification, we open the door to different possibilities in terms of metaprogramming. The source code, along with instructions to install and configure, is accessible at https://github.com/akathorn/elfcala