3 resultados para Logic synthesis

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of developing mechanisms for easily implementing modular extensions to modular (logic) languages. By(language) extensions we refer to different groups of syntactic definitions and translation rules that extend a language. Our use of the concept of modularity in this context is twofold. We would like these extensions to be modular, in the sense above, i.e., we should be able to develop different extensions mostly separately. At the same time, the sources and targets for the extensions are modular languages, i.e., such extensions may take as input sepárate pieces of code and also produce sepárate pieces of code. Dealing with this double requirement involves interesting challenges to ensure that modularity is not broken: first, combinations of extensions (as if they were a single extensión) must be given a precise meaning. Also, the sepárate translation of múltiple sources (as if they were a single source) must be feasible. We present a detailed description of a code expansion-based framework that proposes novel solutions for these problems. We argüe that the approach, while implemented for Ciao, can be adapted for other Prolog-based systems and languages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an analysis for detecting procedures and goals that are deterministic (i.e. that produce at most one solution), or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic (because they cali other predicates that can produce more than one solution). Applications of such determinacy information include detecting programming errors, performing certain high-level program transformations for improving search efñciency, optimizing low level code generation and parallel execution, and estimating tighter upper bounds on the computational costs of goals and data sizes, which can be used for program debugging, resource consumption and granularity control, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efncient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions for expressing properties of programs. We define several assertion schemas for writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time (i.e., statically) or run-time (i.e., dynamically). We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the pecifications. Finally, we report briefly on the currently implemented instances of the generic framework.