7 resultados para Location-Allocation Models
em Universidad Politécnica de Madrid
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
El objetivo del presente trabajo es determinar la localización óptima de una planta de producción de 30.000 m3/año de bioetanol a partir de tubérculos de pataca (Helianthus tuberosus L.) cultivada en regadío, en tierras de barbecho de la Cuenca Hidrográfica del Duero (CH Duero). Inicialmente se elaboró, a partir de datos bibliográficos, un modelo de producción de pataca en base a una ecuación de regresión que relaciona datos experimentales de rendimientos de variedades tardías con variables agroclimáticas. Así se obtuvo una función de producción basada en la cantidad de agua disponible (precipitación efectiva + dosis de riego) y en la radiación global acumulada en el periodo brotación‐senescencia del cultivo. A continuación se estima la superficie potencial de cultivo de pataca en la CH Duero a partir de la superficie arable en regadío cartografiada por el Sistema de Ocupación del Suelo (SIOSE), a la cual se le aplican, en base a los requerimientos del cultivo, unas restricciones climáticas, edafológicas, topográficas y logísticas mediante el uso de Sistemas de Información Geográfica (SIG). La proporción de superficie de regadío restringida se cuantifica a escala municipal con el fin de calcular la superficie de barbecho en regadío apta para el cultivo de pataca. A partir de las bases de datos georreferenciadas de precipitación, radiación global, y la dotación de agua para el riego de cultivos no específicos establecida en el Plan Hidrológico de la Cuenca del Duero a escala comarcal, se estimó la producción potencial de tubérculos de pataca sobre la superficie de barbecho de regadío según el modelo de producción elaborado. Así, en las 53.360 ha de barbecho en regadío aptas para el cultivo de pataca se podrían producir 3,8 Mt de tubérculos al año (80 % de humedad) (761.156 t ms/año) de los que se podría obtener 304.462 m3/año de bioetanol, considerando un rendimiento en la transformación de 12,5 kg mf/l de etanol. Se estiman los costes de las labores de cultivo de pataca así como los costes de la logística de suministro a una planta de transformación considerando una distancia media de transporte de 25 km, en base a las hojas de cálculo de utilización de aperos y maquinaria agrícola oficiales del Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Considerando el balance de costes asociados a la producción de bioetanol (costes de transformación, distribución y transporte del producto, costes estructurales de la planta, ahorro de costes por la utilización de las vinazas generadas en el proceso como fertilizante y un beneficio industrial), se ha estimado que el coste de producción de bioetanol a partir de tubérculos de pataca asciende a 61,03 c€/l. Se calculan los beneficios fiscales para el Estado por el cultivo de 5.522 ha de pataca que suministren la materia prima necesaria para una planta de bioetanol de 30.000 m3/año, en concepto de cotizaciones a la Seguridad Social de los trabajadores, impuestos sobre el valor añadido de los productos consumidos, impuesto sobre sociedades y ahorro de las prestaciones por desempleo. Se obtuvieron unos beneficios fiscales de 10,25 c€ por litro de bioetanol producido. El coste de producción de bioetanol depende del rendimiento de tubérculos por hectárea y de la distancia de transporte desde las zonas de producción de la materia prima hasta la planta. Se calculó la distancia máxima de transporte para que el precio de coste del bioetanol producido sea competitivo con el precio de mercado del bioetanol. Como resultado se determinó que el precio del bioetanol (incluido un beneficio industrial del 15%) de la planta sería igual o inferior al precio de venta en el mercado (66,35 c€/l) con una distancia máxima de transporte de 25 km y un rendimiento mínimo del cultivo de 60,1 t mf/ha. Una vez conocido el área de influencia de la planta según la distancia de transporte máxima, se determinó la localización óptima de la planta de producción de bioetanol mediante un proceso de ubicación‐asignación realizado con SIG. Para ello se analizan los puntos candidatos a la ubicación de la planta según el cumplimiento de unos requerimientos técnicos establecidos (distancia a fuentes de suministro eléctrico y de recursos hídricos, distancia a estaciones de ferrocarril, distancia a núcleos urbanos y existencia de Espacios Naturales Protegidos) que minimizan la distancia de transporte maximizando la cantidad de biomasa disponible según la producción potencial estimada anteriormente. Por último, la superficie destinada al cultivo de pataca en el área de influencia de la planta se determina en base a un patrón de distribución del cultivo alrededor de una agroindustria. Dicho patrón se ha obtenido a partir del análisis del grado de ocupación del cultivo de la remolacha en función de la distancia de transporte a la planta azucarera de Miranda de Ebro (Burgos). El patrón resultante muestra que la relación entre el grado de ocupación del suelo por el cultivo y la distancia de transporte a la planta siguen una ecuación logística. La localización óptima que se ha obtenido mediante la metodología descrita se ubica en el municipio leonés de El Burgo Ranero, donde la producción potencial de tubérculos de pataca en la superficie de barbecho situada en un radio de acción de 25 km es de 375.665 t mf/año, superando las 375.000 t mf requeridas anualmente por la planta de bioetanol. ABSTRACT Jerusalem artichoke (Helianthus tuberosus L.) is a harsh crop with a high potential for biomass production. Its main use is related to bioethanol production from the carbohydrates, inulin mainly, accumulated in its tubers at the end of the crop cycle. The aerial biomass could be used as solid biofuel to provide energy to the bioethanol production process. Therefore, Jerusalem artichoke is a promising crop as feedstock for biofuel production in order to achieve the biofuels consumption objectives established by the Government of Spain (PER 2011‐2020 and RDL 4/2013) and the European Union (Directive 2009/28/EC). This work aims at the determination of the optimal location for a 30,000 m3/year bioethanol production plant from Jerusalem artichoke tubers in the Duero river basin. With this purpose, a crop production model was developed by means of a regression equation that relates experimental yield data of late Jerusalem artichoke varieties with pedo‐climatic parameters from a bibliographic data matrix. The resulting crop production model was based on the crop water availability (including effective rainfall and irrigation water supplied) and on global radiation accumulated in the crop emergence‐senescence period. The crop potential cultivation area for Jerusalem artichoke in the Duero basin was estimated using the georeferenced irrigated arable land from the “Sistema de Ocupación del Suelo” (SIOSE) of Spain. Climatic, soil, slope and logistic restrictions were considered by means of Geographic Information Systems (GIS). The limited potential growing area was then applied to a municipality scale in order to calculate the amount of fallow land suitable for Jerusalem artichoke production. Rainfall and global radiation georeferenced layers as well as data of irrigation water supply for crop production (established within the Duero Hydrologic Plan) were use to estimate the potential production of Jerusalem artichoke tubers in the suitable fallow land according to the crop production model. As a result of this estimation, there are 53,360 ha of fallow land suitable for Jerusalem artichoke production in the Duero basin, where 3.8 M t fm/year could be produced. Considering a bioethanol processing yield of 12.5 kg mf per liter of bioethanol, the above mentioned tuber potential production could be processed in 304,462 m3/year of bioethanol. The Jerusalem crop production costs and the logistic supply costs (considering an average transport distance of 25 km) were estimated according to official agricultural machinery cost calculation sheets of the Minister of Agriculture of Spain (MAGRAMA). The bioethanol production cost from Jerusalem artichoke tubers was calculated considering bioethanol processing, transport and structural costs, industrial profits as well as plant cost savings from the use of vinasses as fertilizer. The resulting bioetanol production cost from Jerusalem artichoke tubers was 61.03 c€/l. Additionally, revenues for the state coffers regarding Social Security contributions, added value taxes of consumed raw materials, corporation tax and unemployment benefit savings due to the cultivation of 5,522 ha of Jerusalem artichoke for the 30.000 m3/year bioethanol plant supply were calculated. The calculated revenues amounted to 10.25 c€/l. Bioethanol production cost and consequently the bioethanol plant economic viability are strongly related to the crop yield as well as to road transport distance from feedstock production areas to the processing plant. The previously estimated bioethanol production cost was compared to the bioethanol market price in order to determine the maximum supply transport distance and the minimum crop yield to reach the bioethanol plant economic viability. The results showed that the proposed plant would be economically viable at a maximum transport distance of 25 km and at a crop yield not less than 60.1 t fm/ha. By means of a GIS location‐allocation analysis, the optimal bioethanol plant location was determined. Suitable candidates were detected according to several plant technical requirements (distance to power and water supply sources, distance to freight station, and distance to urban areas and to Natural Protected Areas). The optimal bioethanol plant location must minimize the supply transport distance whereas it maximizes the amount of available biomass according to the previously estimated biomass potential production. Lastly, the agricultural area around the bioethanol plant finally dedicated to Jerusalem artichoke cultivation was planned according to a crop distribution model. The crop distribution model was established from the analysis of the relation between the sugar beet (Beta vulgaris L.) cropping area and the road transport distance from the sugar processing plant of Miranda de Ebro (Burgos, North of Spain). The optimal location was situated in the municipality of ‘El Burgo Ranero’ in the province of León. The potential production of Jerusalem artichoke tubers in the fallow land within 25 km distance from the plant location was 375,665 t fm/year, which exceeds the amount of biomass yearly required by the bioethanol plant.
Resumo:
The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i) the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii) the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis) and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM) per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%), the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.
Resumo:
This paper introduces a novel technique for identifying logically related sections of the heap such as recursive data structures, objects that are part of the same multi-component structure, and related groups of objects stored in the same collection/array. When combined withthe lifetime properties of these structures, this information can be used to drive a range of program optimizations including pool allocation, object co-location, static deallocation, and region-based garbage collection. The technique outlined in this paper also improves the efficiency of the static analysis by providing a normal form for the abstract models (speeding the convergence of the static analysis). We focus on two techniques for grouping parts of the heap. The first is a technique for precisely identifying recursive data structures in object-oriented programs based on the types declared in the program. The second technique is a novel method for grouping objects that make up the same composite structure and that allows us to partition the objects stored in a collection/array into groups based on a similarity relation. We provide a parametric component in the similarity relation in order to support specific analysis applications (such as a numeric analysis which would need to partition the objects based on numeric properties of the fields). Using the Barnes-Hut benchmark from the JOlden suite we show how these grouping methods can be used to identify various types of logical structures allowing the application of many region-based program optimizations.
Resumo:
Los estudios sobre la asignación del carbono en los ecosistemas forestales proporcionan información esencial para la comprensión de las diferencias espaciales y temporales en el ciclo del carbono de tal forma que pueden aportar información a los modelos y, así predecir las posibles respuestas de los bosques a los cambios en el clima. Dentro de este contexto, los bosques Amazónicos desempeñan un papel particularmente importante en el balance global del carbono; no obstante, existen grandes incertidumbres en cuanto a los controles abióticos en las tasas de la producción primaria neta (PPN), la asignación de los productos de la fotosíntesis a los diferentes componentes o compartimentos del ecosistema (aéreo y subterráneo) y, cómo estos componentes de la asignación del carbono responden a eventos climáticos extremos. El objetivo general de esta tesis es analizar los componentes de la asignación del carbono en bosques tropicales maduros sobre suelos contrastantes, que crecen bajo condiciones climáticas similares en dos sitios ubicados en la Amazonia noroccidental (Colombia): el Parque Natural Nacional Amacayacu y la Estación Biológica Zafire. Con este objetivo, realicé mediciones de los componentes de la asignación del carbono (biomasa, productividad primaria neta, y su fraccionamiento) a nivel ecosistémico y de la dinámica forestal (tasas anuales de mortalidad y reclutamiento), a lo largo de ocho años (20042012) en seis parcelas permanentes de 1 hectárea establecidas en cinco tipos de bosques sobre suelos diferentes (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa). Toda esta información me permitió abordar preguntas específicas que detallo a continuación. En el Capítulo 2 evalúe la hipótesis de que a medida que aumenta la fertilidad del suelo disminuye la cantidad del carbono asignado a la producción subterránea (raíces finas con diámetro <2 mm). Y para esto, realicé mediciones de la masa y la producción de raíces finas usando dos métodos: (1) el de los cilindros de crecimiento y, (2) el de los cilindros de extracción secuencial. El monitoreo se realizó durante 2.2 años en los bosques con suelos más contrastantes: arcilla y arena-francosa. Encontré diferencias significativas en la masa de raíces finas y su producción entre los bosques y, también con respecto a la profundidad del suelo (010 y 1020 cm). El bosque sobre arena-francosa asignó más carbono a las raíces finas que el bosque sobre arcillas. La producción de raíces finas en el bosque sobre arena-francosa fue dos veces más alta (media ± error estándar = 2.98 ± 0.36 y 3.33 ± 0.69 Mg C ha1 año1, con el método 1 y 2, respectivamente), que para el bosque sobre arcillas, el suelo más fértil (1.51 ± 0.14, método 1, y desde 1.03 ± 0.31 a 1.36 ± 0.23 Mg C ha1 año1, método 2). Del mismo modo, el promedio de la masa de raíces finas fue tres veces mayor en el bosque sobre arena-francosa (5.47 ± 0.17 Mg C ha1) que en el suelo más fértil (de 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). La masa de las raíces finas también mostró un patrón temporal relacionado con la lluvia, mostrando que la producción de raíces finas disminuyó sustancialmente en el período seco del año 2005. Estos resultados sugieren que los recursos del suelo pueden desempeñar un papel importante en los patrones de la asignación del carbono entre los componentes aéreo y subterráneo de los bosques tropicales; y que el suelo no sólo influye en las diferencias en la masa de raíces finas y su producción, sino que también, en conjunto con la lluvia, sobre la estacionalidad de la producción. En el Capítulo 3 estimé y analicé los tres componentes de la asignación del carbono a nivel del ecosistema: la biomasa, la productividad primaria neta PPN, y su fraccionamiento, en los mismos bosques del Capítulo 2 (el bosque sobre arcillas y el bosque sobre arena-francosa). Encontré diferencias significativas en los patrones de la asignación del carbono entre los bosques; el bosque sobre arcillas presentó una mayor biomasa total y aérea, así como una PPN, que el bosque sobre arena-francosa. Sin embargo, la diferencia entre los dos bosques en términos de la productividad primaria neta total fue menor en comparación con las diferencias entre la biomasa total de los bosques, como consecuencia de las diferentes estrategias en la asignación del carbono a los componentes aéreo y subterráneo del bosque. La proporción o fracción de la PPN asignada a la nueva producción de follaje fue relativamente similar entre los dos bosques. Nuestros resultados de los incrementos de la biomasa aérea sugieren una posible compensación entre la asignación del carbono al crecimiento de las raíces finas versus el de la madera, a diferencia de la compensación comúnmente asumida entre la parte aérea y la subterránea en general. A pesar de estas diferencias entre los bosques en términos de los componentes de la asignación del carbono, el índice de área foliar fue relativamente similar entre ellos, lo que sugiere que el índice de área foliar es más un indicador de la PPN total que de la asignación de carbono entre componentes. En el Capítulo 4 evalué la variación espacial y temporal de los componentes de la asignación del carbono y la dinámica forestal de cinco tipos e bosques amazónicos y sus respuestas a fluctuaciones en la precipitación, lo cual es completamente relevante en el ciclo global del carbono y los procesos biogeoquímicos en general. Estas variaciones son así mismo importantes para evaluar los efectos de la sequía o eventos extremos sobre la dinámica natural de los bosques amazónicos. Evalué la variación interanual y la estacionalidad de los componentes de la asignación del carbono y la dinámica forestal durante el periodo 2004−2012, en cinco bosques maduros sobre diferentes suelos (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa), todos bajo el mismo régimen local de precipitación en la Amazonia noroccidental (Colombia). Quería examinar sí estos bosques responden de forma similar a las fluctuaciones en la precipitación, tal y como pronostican muchos modelos. Consideré las siguientes preguntas: (i) ¿Existe una correlación entre los componentes de la asignación del carbono y la dinámica forestal con la precipitación? (ii) ¿Existe correlación entre los bosques? (iii) ¿Es el índice de área foliar (LAI) un indicador de las variaciones en la producción aérea o es un reflejo de los cambios en los patrones de la asignación del carbono entre bosques?. En general, la correlación entre los componentes aéreo y subterráneo de la asignación del carbono con la precipitación sugiere que los suelos juegan un papel importante en las diferencias espaciales y temporales de las respuestas de estos bosques a las variaciones en la precipitación. Por un lado, la mayoría de los bosques mostraron que los componentes aéreos de la asignación del carbono son susceptibles a las fluctuaciones en la precipitación; sin embargo, el bosque sobre arena-francosa solamente presentó correlación con la lluvia con el componente subterráneo (raíces finas). Por otra parte, a pesar de que el noroeste Amazónico es considerado sin una estación seca propiamente (definida como <100 mm meses −1), la hojarasca y la masa de raíces finas mostraron una alta variabilidad y estacionalidad, especialmente marcada durante la sequía del 2005. Además, los bosques del grupo de suelos francos mostraron que la hojarasca responde a retrasos en la precipitación, al igual que la masa de raíces finas del bosque sobre arena-francosa. En cuanto a la dinámica forestal, sólo la tasa de mortalidad del bosque sobre arena-francosa estuvo correlacionada con la precipitación (ρ = 0.77, P <0.1). La variabilidad interanual en los incrementos en el tallo y la biomasa de los individuos resalta la importancia de la mortalidad en la variación de los incrementos en la biomasa aérea. Sin embargo, las tasas de mortalidad y las proporciones de individuos muertos por categoría de muerte (en pie, caído de raíz, partido y desaparecido), no mostraron tendencias claras relacionadas con la sequía. Curiosamente, la hojarasca, el incremento en la biomasa aérea y las tasas de reclutamiento mostraron una alta correlación entre los bosques, en particular dentro del grupo de los bosques con suelos francos. Sin embargo, el índice de área foliar estimado para los bosques con suelos más contrastantes (arcilla y arena-francosa), no presentó correlación significativa con la lluvia; no obstante, estuvo muy correlacionado entre bosques; índice de área foliar no reflejó las diferencias en la asignación de los componentes del carbono, y su respuesta a la precipitación en estos bosques. Por último, los bosques estudiados muestran que el noroeste amazónico es susceptible a fenómenos climáticos, contrario a lo propuesto anteriormente debido a la ausencia de una estación seca propiamente dicha. ABSTRACT Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components; and how the carbon allocation components of Amazon forests respond to extreme climate events. The overall objective of this thesis is to examine the carbon allocation components in old-growth tropical forests on contrasting soils, and under similar climatic conditions in two sites at the Amacayacu National Natural Park and the Zafire Biological Station, located in the north-western Amazon (Colombia). Measurements of above- and below-ground carbon allocation components (biomass, net primary production, and its partitioning) at the ecosystem level, and dynamics of tree mortality and recruitment were done along eight years (20042012) in six 1-ha plots established in five Amazon forest types on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand) to address specific questions detailed in the next paragraphs. In Chapter 2, I evaluated the hypothesis that as soil fertility increases the amount of carbon allocated to below-ground production (fine-roots) should decrease. To address this hypothesis the standing crop mass and production of fine-roots (<2 mm) were estimated by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in the most contrasting forests: the clay-soil forest and the loamy-sand forest. We found that the standing crop fine-root mass and its production were significantly different between forests and also between soil depths (0–10 and 10–20 cm). The loamysand forest allocated more carbon to fine-roots than the clay-soil forest, with fine-root production in the loamy-sand forest twice (mean ± standard error = 2.98 ± 0.36 and 3.33 ± 0.69 Mg C ha −1 yr −1, method 1 and 2, respectively) as much as for the more fertile claysoil forest (1.51 ± 0.14, method 1, and from 1.03 ± 0.31 to 1.36 ± 0.23 Mg C ha −1 yr −1, method 2). Similarly, the average of standing crop fine-root mass was three times higher in the loamy-sand forest (5.47 ± 0.17 Mg C ha1) than in the more fertile soil (from 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). The standing crop fine-root mass also showed a temporal pattern related to rainfall, with the production of fine-roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation of below-ground components, not only driven the differences in the biomass and its production, but also in the time when it is produced. In Chapter 3, I assessed the three components of stand-level carbon allocation (biomass, NPP, and its partitioning) for the same forests evaluated in Chapter 2 (clay-soil forest and loamy-sand forest). We found differences in carbon allocation patterns between these two forests, showing that the forest on clay-soil had a higher aboveground and total biomass as well as a higher above-ground NPP than the loamy-sand forest. However, differences between the two types of forests in terms of stand-level NPP were smaller, as a consequence of different strategies in the carbon allocation of above- and below-ground components. The proportional allocation of NPP to new foliage production was relatively similar between the two forests. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus wood growth (as it has been reported by other authors), as opposed to the most commonly assumed trade-off between total above- and below-ground production. Despite these differences among forests in terms of carbon allocation components, the leaf area index showed differences between forests like total NPP, suggesting that the leaf area index is more indicative of total NPP than carbon allocation. In Chapter 4, I evaluated the spatial and temporal variation of carbon allocation components and forest dynamics of Amazon forests as well as their responses to climatic fluctuations. I evaluated the intra- and inter-annual variation of carbon allocation components and forest dynamics during the period 2004−2012 in five forests on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand), but growing under the same local precipitation regime in north-western Amazonia (Colombia). We were interested in examining if these forests respond similarly to rainfall fluctuations as many models predict, considering the following questions: (i) Is there a correlation in carbon allocation components and forest dynamics with precipitation? (ii) Is there a correlation among forests? (iii) Are temporal responses in leaf area index (LAI) indicative of variations of above-ground production or a reflection of changes in carbon allocation patterns among forests?. Overall, the correlation of above- and below-ground carbon allocation components with rainfall suggests that soils play an important role in the spatial and temporal differences of responses of these forests to rainfall fluctuations. On the one hand, most forests showed that the above-ground components are susceptible to rainfall fluctuations; however, there was a forest on loamy-sand that only showed a correlation with the below-ground component (fine-roots). On the other hand, despite the fact that north-western Amazonia is considered without a conspicuous dry season (defined as <100 mm month−1), litterfall and fine-root mass showed high seasonality and variability, particularly marked during the drought of 2005. Additionally, forests of the loam-soil group showed that litterfall respond to time-lags in rainfall as well as and the fine-root mass of the loamy-sand forest. With regard to forest dynamics, only the mortality rate of the loamy-sand forest was significantly correlated with rainfall (77%). The observed inter-annual variability of stem and biomass increments of individuals highlighted the importance of the mortality in the above-ground biomass increment. However, mortality rates and death type proportion did not show clear trends related to droughts. Interestingly, litterfall, above-ground biomass increment and recruitment rates of forests showed high correlation among forests, particularly within the loam-soil forests group. Nonetheless, LAI measured in the most contrasting forests (clay-soil and loamysand) was poorly correlated with rainfall but highly correlated between forests; LAI did not reflect the differences in the carbon allocation components, and their response to rainfall on these forests. Finally, the forests studied highlight that north-western Amazon forests are also susceptible to climate fluctuations, contrary to what has been proposed previously due to their lack of a pronounced dry season.
Resumo:
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.
Resumo:
In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES- Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems.