6 resultados para Load tests
em Universidad Politécnica de Madrid
Resumo:
El proyecto geotécnico de columnas de grava tiene todas las incertidumbres asociadas a un proyecto geotécnico y además hay que considerar las incertidumbres inherentes a la compleja interacción entre el terreno y la columna, la puesta en obra de los materiales y el producto final conseguido. Este hecho es común a otros tratamientos del terreno cuyo objetivo sea, en general, la mejora “profunda”. Como los métodos de fiabilidad (v.gr., FORM, SORM, Monte Carlo, Simulación Direccional) dan respuesta a la incertidumbre de forma mucho más consistente y racional que el coeficiente de seguridad tradicional, ha surgido un interés reciente en la aplicación de técnicas de fiabilidad a la ingeniería geotécnica. Si bien la aplicación concreta al proyecto de técnicas de mejora del terreno no es tan extensa. En esta Tesis se han aplicado las técnicas de fiabilidad a algunos aspectos del proyecto de columnas de grava (estimación de asientos, tiempos de consolidación y aumento de la capacidad portante) con el objetivo de efectuar un análisis racional del proceso de diseño, considerando los efectos que tienen la incertidumbre y la variabilidad en la seguridad del proyecto, es decir, en la probabilidad de fallo. Para alcanzar este objetivo se ha utilizado un método analítico avanzado debido a Castro y Sagaseta (2009), que mejora notablemente la predicción de las variables involucradas en el diseño del tratamiento y su evolución temporal (consolidación). Se ha estudiado el problema del asiento (valor y tiempo de consolidación) en el contexto de la incertidumbre, analizando dos modos de fallo: i) el primer modo representa la situación en la que es posible finalizar la consolidación primaria, parcial o totalmente, del terreno mejorado antes de la ejecución de la estructura final, bien sea por un precarga o porque la carga se pueda aplicar gradualmente sin afectar a la estructura o instalación; y ii) por otra parte, el segundo modo de fallo implica que el terreno mejorado se carga desde el instante inicial con la estructura definitiva o instalación y se comprueba que el asiento final (transcurrida la consolidación primaria) sea lo suficientemente pequeño para que pueda considerarse admisible. Para trabajar con valores realistas de los parámetros geotécnicos, los datos se han obtenido de un terreno real mejorado con columnas de grava, consiguiendo, de esta forma, un análisis de fiabilidad más riguroso. La conclusión más importante, obtenida del análisis de este caso particular, es la necesidad de precargar el terreno mejorado con columnas de grava para conseguir que el asiento ocurra de forma anticipada antes de la aplicación de la carga correspondiente a la estructura definitiva. De otra forma la probabilidad de fallo es muy alta, incluso cuando el margen de seguridad determinista pudiera ser suficiente. En lo que respecta a la capacidad portante de las columnas, existen un buen número de métodos de cálculo y de ensayos de carga (tanto de campo como de laboratorio) que dan predicciones dispares del valor de la capacidad última de las columnas de grava. En las mallas indefinidas de columnas, los resultados del análisis de fiabilidad han confirmado las consideraciones teóricas y experimentales existentes relativas a que no se produce fallo por estabilidad, obteniéndose una probabilidad de fallo prácticamente nula para este modo de fallo. Sin embargo, cuando se analiza, en el contexto de la incertidumbre, la capacidad portante de pequeños grupos de columnas bajo zapatas se ha obtenido, para un caso con unos parámetros geotécnicos típicos, que la probabilidad de fallo es bastante alta, por encima de los umbrales normalmente admitidos para Estados Límite Últimos. Por último, el trabajo de recopilación sobre los métodos de cálculo y de ensayos de carga sobre la columna aislada ha permitido generar una base de datos suficientemente amplia como para abordar una actualización bayesiana de los métodos de cálculo de la columna de grava aislada. El marco bayesiano de actualización ha resultado de utilidad en la mejora de las predicciones de la capacidad última de carga de la columna, permitiendo “actualizar” los parámetros del modelo de cálculo a medida que se dispongan de ensayos de carga adicionales para un proyecto específico. Constituye una herramienta valiosa para la toma de decisiones en condiciones de incertidumbre ya que permite comparar el coste de los ensayos adicionales con el coste de una posible rotura y , en consecuencia, decidir si es procedente efectuar dichos ensayos. The geotechnical design of stone columns has all the uncertainties associated with a geotechnical project and those inherent to the complex interaction between the soil and the column, the installation of the materials and the characteristics of the final (as built) column must be considered. This is common to other soil treatments aimed, in general, to “deep” soil improvement. Since reliability methods (eg, FORM, SORM, Monte Carlo, Directional Simulation) deals with uncertainty in a much more consistent and rational way than the traditional safety factor, recent interest has arisen in the application of reliability techniques to geotechnical engineering. But the specific application of these techniques to soil improvement projects is not as extensive. In this thesis reliability techniques have been applied to some aspects of stone columns design (estimated settlements, consolidation times and increased bearing capacity) to make a rational analysis of the design process, considering the effects of uncertainty and variability on the safety of the project, i.e., on the probability of failure. To achieve this goal an advanced analytical method due to Castro and Sagaseta (2009), that significantly improves the prediction of the variables involved in the design of treatment and its temporal evolution (consolidation), has been employed. This thesis studies the problem of stone column settlement (amount and speed) in the context of uncertainty, analyzing two failure modes: i) the first mode represents the situation in which it is possible to cause primary consolidation, partial or total, of the improved ground prior to implementation of the final structure, either by a pre-load or because the load can be applied gradually or programmed without affecting the structure or installation; and ii) on the other hand, the second mode implies that the improved ground is loaded from the initial instant with the final structure or installation, expecting that the final settlement (elapsed primary consolidation) is small enough to be allowable. To work with realistic values of geotechnical parameters, data were obtained from a real soil improved with stone columns, hence producing a more rigorous reliability analysis. The most important conclusion obtained from the analysis of this particular case is the need to preload the stone columns-improved soil to make the settlement to occur before the application of the load corresponding to the final structure. Otherwise the probability of failure is very high, even when the deterministic safety margin would be sufficient. With respect to the bearing capacity of the columns, there are numerous methods of calculation and load tests (both for the field and the laboratory) giving different predictions of the ultimate capacity of stone columns. For indefinite columns grids, the results of reliability analysis confirmed the existing theoretical and experimental considerations that no failure occurs due to the stability failure mode, therefore resulting in a negligible probability of failure. However, when analyzed in the context of uncertainty (for a case with typical geotechnical parameters), results show that the probability of failure due to the bearing capacity failure mode of a group of columns is quite high, above thresholds usually admitted for Ultimate Limit States. Finally, the review of calculation methods and load tests results for isolated columns, has generated a large enough database, that allowed a subsequent Bayesian updating of the methods for calculating the bearing capacity of isolated stone columns. The Bayesian updating framework has been useful to improve the predictions of the ultimate load capacity of the column, allowing to "update" the parameters of the calculation model as additional load tests become available for a specific project. Moreover, it is a valuable tool for decision making under uncertainty since it is possible to compare the cost of further testing to the cost of a possible failure and therefore to decide whether it is appropriate to perform such tests.
Resumo:
La necesidad de desarrollar técnicas para predecir la respuesta vibroacústica de estructuras espaciales lia ido ganando importancia en los últimos años. Las técnicas numéricas existentes en la actualidad son capaces de predecir de forma fiable el comportamiento vibroacústico de sistemas con altas o bajas densidades modales. Sin embargo, ambos rangos no siempre solapan lo que hace que sea necesario el desarrollo de métodos específicos para este rango, conocido como densidad modal media. Es en este rango, conocido también como media frecuencia, donde se centra la presente Tesis doctoral, debido a la carencia de métodos específicos para el cálculo de la respuesta vibroacústica. Para las estructuras estudiadas en este trabajo, los mencionados rangos de baja y alta densidad modal se corresponden, en general, con los rangos de baja y alta frecuencia, respectivamente. Los métodos numéricos que permiten obtener la respuesta vibroacústica para estos rangos de frecuencia están bien especificados. Para el rango de baja frecuencia se emplean técnicas deterministas, como el método de los Elementos Finitos, mientras que, para el rango de alta frecuencia las técnicas estadísticas son más utilizadas, como el Análisis Estadístico de la Energía. En el rango de medias frecuencias ninguno de estos métodos numéricos puede ser usado con suficiente precisión y, como consecuencia -a falta de propuestas más específicas- se han desarrollado métodos híbridos que combinan el uso de métodos de baja y alta frecuencia, intentando que cada uno supla las deficiencias del otro en este rango medio. Este trabajo propone dos soluciones diferentes para resolver el problema de la media frecuencia. El primero de ellos, denominado SHFL (del inglés Subsystem based High Frequency Limit procedure), propone un procedimiento multihíbrido en el cuál cada subestructura del sistema completo se modela empleando una técnica numérica diferente, dependiendo del rango de frecuencias de estudio. Con este propósito se introduce el concepto de límite de alta frecuencia de una subestructura, que marca el límite a partir del cual dicha subestructura tiene una densidad modal lo suficientemente alta como para ser modelada utilizando Análisis Estadístico de la Energía. Si la frecuencia de análisis es menor que el límite de alta frecuencia de la subestructura, ésta se modela utilizando Elementos Finitos. Mediante este método, el rango de media frecuencia se puede definir de una forma precisa, estando comprendido entre el menor y el mayor de los límites de alta frecuencia de las subestructuras que componen el sistema completo. Los resultados obtenidos mediante la aplicación de este método evidencian una mejora en la continuidad de la respuesta vibroacústica, mostrando una transición suave entre los rangos de baja y alta frecuencia. El segundo método propuesto se denomina HS-CMS (del inglés Hybrid Substructuring method based on Component Mode Synthesis). Este método se basa en la clasificación de la base modal de las subestructuras en conjuntos de modos globales (que afectan a todo o a varias partes del sistema) o locales (que afectan a una única subestructura), utilizando un método de Síntesis Modal de Componentes. De este modo es posible situar espacialmente los modos del sistema completo y estudiar el comportamiento del mismo desde el punto de vista de las subestructuras. De nuevo se emplea el concepto de límite de alta frecuencia de una subestructura para realizar la clasificación global/local de los modos en la misma. Mediante dicha clasificación se derivan las ecuaciones globales del movimiento, gobernadas por los modos globales, y en las que la influencia del conjunto de modos locales se introduce mediante modificaciones en las mismas (en su matriz dinámica de rigidez y en el vector de fuerzas). Las ecuaciones locales se resuelven empleando Análisis Estadístico de Energías. Sin embargo, este último será un modelo híbrido, en el cual se introduce la potencia adicional aportada por la presencia de los modos globales. El método ha sido probado para el cálculo de la respuesta de estructuras sometidas tanto a cargas estructurales como acústicas. Ambos métodos han sido probados inicialmente en estructuras sencillas para establecer las bases e hipótesis de aplicación. Posteriormente, se han aplicado a estructuras espaciales, como satélites y reflectores de antenas, mostrando buenos resultados, como se concluye de la comparación de las simulaciones y los datos experimentales medidos en ensayos, tanto estructurales como acústicos. Este trabajo abre un amplio campo de investigación a partir del cual es posible obtener metodologías precisas y eficientes para reproducir el comportamiento vibroacústico de sistemas en el rango de la media frecuencia. ABSTRACT Over the last years an increasing need of novel prediction techniques for vibroacoustic analysis of space structures has arisen. Current numerical techniques arc able to predict with enough accuracy the vibro-acoustic behaviour of systems with low and high modal densities. However, space structures are, in general, very complex and they present a range of frequencies in which a mixed behaviour exist. In such cases, the full system is composed of some sub-structures which has low modal density, while others present high modal density. This frequency range is known as the mid-frequency range and to develop methods for accurately describe the vibro-acoustic response in this frequency range is the scope of this dissertation. For the structures under study, the aforementioned low and high modal densities correspond with the low and high frequency ranges, respectively. For the low frequency range, deterministic techniques as the Finite Element Method (FEM) are used while, for the high frequency range statistical techniques, as the Statistical Energy Analysis (SEA), arc considered as more appropriate. In the mid-frequency range, where a mixed vibro-acoustic behaviour is expected, any of these numerical method can not be used with enough confidence level. As a consequence, it is usual to obtain an undetermined gap between low and high frequencies in the vibro-acoustic response function. This dissertation proposes two different solutions to the mid-frequency range problem. The first one, named as The Subsystem based High Frequency Limit (SHFL) procedure, proposes a multi-hybrid procedure in which each sub-structure of the full system is modelled with the appropriate modelling technique, depending on the frequency of study. With this purpose, the concept of high frequency limit of a sub-structure is introduced, marking out the limit above which a substructure has enough modal density to be modelled by SEA. For a certain analysis frequency, if it is lower than the high frequency limit of the sub-structure, the sub-structure is modelled through FEM and, if the frequency of analysis is higher than the high frequency limit, the sub-structure is modelled by SEA. The procedure leads to a number of hybrid models required to cover the medium frequency range, which is defined as the frequency range between the lowest substructure high frequency limit and the highest one. Using this procedure, the mid-frequency range can be define specifically so that, as a consequence, an improvement in the continuity of the vibro-acoustic response function is achieved, closing the undetermined gap between the low and high frequency ranges. The second proposed mid-frequency solution is the Hybrid Sub-structuring method based on Component Mode Synthesis (HS-CMS). The method adopts a partition scheme based on classifying the system modal basis into global and local sets of modes. This classification is performed by using a Component Mode Synthesis, in particular a Craig-Bampton transformation, in order to express the system modal base into the modal bases associated with each sub-structure. Then, each sub-structure modal base is classified into global and local set, fist ones associated with the long wavelength motion and second ones with the short wavelength motion. The high frequency limit of each sub-structure is used as frequency frontier between both sets of modes. From this classification, the equations of motion associated with global modes are derived, which include the interaction of local modes by means of corrections in the dynamic stiffness matrix and the force vector of the global problem. The local equations of motion are solved through SEA, where again interactions with global modes arc included through the inclusion of an additional input power into the SEA model. The method has been tested for the calculation of the response function of structures subjected to structural and acoustic loads. Both methods have been firstly tested in simple structures to establish their basis and main characteristics. Methods are also verified in space structures, as satellites and antenna reflectors, providing good results as it is concluded from the comparison with experimental results obtained in both, acoustic and structural load tests. This dissertation opens a wide field of research through which further studies could be performed to obtain efficient and accurate methodologies to appropriately reproduce the vibro-acoustic behaviour of complex systems in the mid-frequency range.
Resumo:
En la presente investigación se analiza la causa del hundimiento del cuarto compartimento del Tercer Depósito del Canal de Isabel II el 8 de abril de 1905, uno de los más graves de la historia de la construcción en España: fallecieron 30 personas y quedaron heridas otras 60. El Proyecto y Construcción de esta estructura era de D. José Eugenio Ribera, una de las grandes figuras de la ingeniería civil en nuestro país, cuya carrera pudo haber quedado truncada como consecuencia del siniestro. Dado el tiempo transcurrido desde la ocurrencia de este accidente, la investigación ha partido de la recopilación de la información relativa al Proyecto y a la propia construcción de la estructura, para revisar a continuación la información disponible sobre el hundimiento. De la construcción de la cubierta es interesante destacar la atrevida configuración estructural, cubriéndose una inmensa superficie de 74.000 m2 mediante una sucesión de bóvedas de hormigón armado de tan sólo 5 cm de espesor y un rebajamiento de 1/10 para salvar una luz de 6 m, que apoyaban en pórticos del mismo material, con pilares también muy esbeltos: 0,25 m de lado para 8 m de altura. Y todo ello en una época en la que la tecnología y conocimiento de las estructuras con este "nuevo" material se basaban en buena medida en el desarrollo de patentes. En cuanto a la información sobre el hundimiento, llama la atención en primer lugar la relevancia de los técnicos, peritos y letrados que intervinieron en el juicio y en el procedimiento administrativo posterior, poniéndose de manifiesto la trascendencia que el accidente tuvo en su momento y que, sin embargo, no ha trascendido hasta nuestros días. Ejemplo de ello es el papel de Echegaray -primera figura intelectual de la época- como perito en la defensa de Ribera, de D. Melquiades Álvarez -futuro presidente del Congreso- como abogado defensor, el General Marvá -uno de los máximos exponentes del papel de los ingenieros militares en la introducción del hormigón armado en nuestro país-, que presidiría la Comisión encargada del peritaje por parte del juzgado, o las opiniones de reconocidas personalidades internacionales del "nuevo" material como el Dr. von Emperger o Hennebique. Pero lo más relevante de dicha información es la falta de uniformidad sobre lo que pudo ocasionar el hundimiento: fallos en los materiales, durante la construcción, defectos en el diseño de la estructura, la realización de unas pruebas de carga cuando se concluyó ésta, etc. Pero la que durante el juicio y en los Informes posteriores se impuso como causa del fallo de la estructura fue su dilatación como consecuencia de las altas temperaturas que se produjeron aquella primavera. Y ello a pesar de que el hundimiento ocurrió a las 7 de la mañana... Con base en esta información se ha analizado el comportamiento estructural de la cubierta, permitiendo evaluar el papel que diversos factores pudieron tener en el inicio del hundimiento y en su extensión a toda la superficie construida, concluyéndose así cuáles fueron las causas del siniestro. De los resultados obtenidos se presta especial atención a las enseñanzas que se desprenden de la ocurrencia del hundimiento, enfatizándose en la relevancia de la historia -y en particular de los casos históricos de error- para la formación continua que debe existir en la Ingeniería. En el caso del hundimiento del Tercer Depósito algunas de estas "enseñanzas" son de plena actualidad, tales como la importancia de los detalles constructivos en la "robustez" de la estructuras, el diseño de estructuras "integrales" o la vigilancia del proceso constructivo. Por último, la investigación ha servido para recuperar, una vez más, la figura de D. José Eugenio Ribera, cuyo papel en la introducción del hormigón armado en España fue decisivo. En la obra del Tercer Depósito se arriesgó demasiado, y provocó un desastre que aceleró la transición hacia una nueva etapa en el hormigón estructural al abrigo de un mayor conocimiento científico y de las primeras normativas. También en esta etapa sería protagonista. This dissertation analyses the cause of the collapse of the 4th compartment of the 3th Reservoir of Canal de Isabel II in Madrid. It happened in 1905, on April 8th, being one of the most disastrous accidents occurred in the history of Spanish construction: 30 people died and 60 were injured. The design and construction supervision were carried out by D. José Eugenio Ribera, one of the main figures in Civil Engineering of our country, whose career could have been destroyed as a result of this accident. Since it occurred more than 100 years ago, the investigation started by compiling information about the structure`s design and construction, followed by reviewing the available information about the accident. With regard to the construction, it is interesting to point out its daring structural configuration. It covered a huge area of 74.000 m2 with a series of reinforced concrete vaults with a thickness of not more than 5 cm, a 6 m span and a rise of 1/10th. In turn, these vaults were supported by frames composed of very slender 0,25 m x 0,25 m columns with a height of 8 m. It is noteworthy that this took place in a time when the technology and knowledge about this "new" material was largely based on patents. In relation to the information about the collapse, its significance is shown by the important experts and lawyers that were involved in the trial and the subsequent administrative procedure. For example, Echegaray -the most important intellectual of that time- defended Ribera, Melquiades Álvarez –the future president of the Congress- was his lawyer, and General Marvá -who represented the important role of the military engineers in the introduction of reinforced concrete in our country-, led the Commission that was put in charge by the judge of the root cause analysis. In addition, the matter caught the interest of renowned foreigners like Dr. von Emperger or Hennebique and their opinions had a great influence. Nonetheless, this structural failure is unknown to most of today’s engineers. However, what is most surprising are the different causes that were claimed to lie at the root of the disaster: material defects, construction flaws, errors in the design, load tests performed after the structure was finished, etc. The final cause that was put forth during the trial and in the following reports was attributed to the dilatation of the roof due to the high temperatures that spring, albeit the collapse occurred at 7 AM... Based on this information the structural behaviour of the roof has been analysed, which allowed identifying the causes that could have provoked the initial failure and those that could have led to the global collapse. Lessons have been learned from these results, which points out the relevance of history -and in particular, of examples gone wrong- for the continuous education that should exist in engineering. In the case of the 3th Reservoir some of these lessons are still relevant during the present time, like the importance of detailing in "robustness", the design of "integral" structures or the due consideration of construction methods. Finally, the investigation has revived, once again, the figure of D. José Eugenio Ribera, whose role in the introduction of reinforced concrete in Spain was crucial. With the construction of the 3th Reservoir he took too much risk and caused a disaster that accelerated the transition to a new era in structural concrete based on greater scientific knowledge and the first codes. In this new period he would also play a major role.
Resumo:
This article investigates experimentally the application of health monitoring techniques to assess the damage on a particular kind of hysteretic (metallic) damper called web plastifying dampers, which are subjected to cyclic loading. In general terms, hysteretic dampers are increasingly used as passive control systems in advanced earthquake-resistant structures. Nonparametric statistical processing of the signals obtained from simple vibration tests of the web plastifying damper is used here to propose an area index damage. This area index damage is compared with an alternative energy-based index of damage proposed in past research that is based on the decomposition of the load?displacement curve experienced by the damper. Index of damage has been proven to accurately predict the level of damage and the proximity to failure of web plastifying damper, but obtaining the load?displacement curve for its direct calculation requires the use of costly instrumentation. For this reason, the aim of this study is to estimate index of damage indirectly from simple vibration tests, calling for much simpler and cheaper instrumentation, through an auxiliary index called area index damage. Web plastifying damper is a particular type of hysteretic damper that uses the out-of-plane plastic deformation of the web of I-section steel segments as a source of energy dissipation. Four I-section steel segments with similar geometry were subjected to the same pattern of cyclic loading, and the damage was evaluated with the index of damage and area index damage indexes at several stages of the loading process. A good correlation was found between area index damage and index of damage. Based on this correlation, simple formulae are proposed to estimate index of damage from the area index damage.
Resumo:
In order to reduce costs and time while improving quality, durability and sustainability in structural concrete constructions, a widely used material nowadays, special care must be taken in some crucial phases of the project and execution, including the structure design and calculation, the dosage, dumping and curing of concrete: another important aspect is the proper design and execution of assembly plans and construction details. The framework, a name designating the whole reinforcement bars cage already assembled as shown in the drawings, can be made up of several components and implies higher or lower industrialization degree. The framework costs constitute about one third of the price per cubic meter placed in concrete works. The best solutions from all points of view are clearly those involving an easier processing to achieve the same goal, and consequently carrying a high degree of industrialization, meaning quality and safety in the work. This thesis aims to provide an indepth analysis of a relatively new type of anchoring by plate known as headed reinforcement bars, which can potentially replace standard or L-shaped hooks, improving the cleaning of construction details and enabling a faster, more flexible, and therefore a more economical assembly. A literature review on the topic and an overview of typical applications is provided, followed by some examples of specific applications in real projects. Since a strict theoretical formulation used to provide the design plate dimensions has not yet been put forward, an equation is proposed for the side-face blowout strength of the anchorage, based on the capacity of concrete to carry concentrated loads in cases in which no transverse reinforcement is provided. The correlation of the calculated ultimate load with experimental results available in the literature is given. Besides, the proposed formulation can be expanded to cases in which a certain development length is available: using a software for nonlinear finite element analysis oriented to the study of reinforced concrete, numerical tests on the bond-bearing interaction are performed. The thesis ends with a testing of eight corner joints subjected to a closing moment, held in the Structures Laboratory of the Polytechnic University of Madrid, aiming to check whether the design of such plates as stated is adequate for these elements and whether an element with plate-anchored reinforcement is equivalent to one with a traditional construction detail.
Resumo:
Integral Masonry System consisting of intersecting steel trusses alo ng each of the three dimensional directions of space on walls and slabs using any masonry material, had yet been backed up by the previous adobe test for seismic areas. This paper presents the comparison this last test and the adaptation of the IMS using h ollow brick. A prototype based on a two storey model house (6mx6mx6m) has being also built in two different scales in order to maximize the load and size of the shake table: the first one half size the whole building (3mx3mx3m) and the second, a quarter of the real size (3mx3mx6m). Both tests have suffered some mild to moderate damages while supporting the higher seismic action subjected by the shake table, without even fissuring the first test and with very few damages the second one. The thickness of the hollow brick wall and the diameter of the tree - dimensional truss reinforcement were scaled to the real size test in order to ascertain its great structural behaviour in relation to the previous structural model calculations. The aim of this study is to sum marize the results of the research collaboration between the ETSAM - UPM and the PUCP in whose laboratory these tests were carried out.