2 resultados para Llull, Ramon, 1232 o 3-1315 o 6 -- Influència
em Universidad Politécnica de Madrid
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.
Resumo:
The early detection of spoiling metabolic products in contaminated food is a very important tool to control quality. Some volatile compounds produce unpleasant odours at very low concentrations, making their early detection very challenging. This is the case of 1,3-pentadiene produced by microorganisms through decarboxylation of the preservative sorbate. In this work, we have developed a methodology to use the data produced by a low-cost, compact MWIR (Mid-Wave IR) spectrometry device without moving parts, which is based on a linear array of 128 elements of VPD PbSe coupled to a linear variable filter (LVF) working in the spectral range between 3 and 4.6 ?m. This device is able to analyze food headspace gases through dedicated sample presentation setup. This methodology enables the detection of CO2 and the volatile compound 1,3-pentadiene, as compared to synthetic patrons. Data analysis is based on an automated multidimensional dynamic processing of the MWIR spectra. Principal component and discriminant analysis allow segregating between four yeast strains including producers and no producers. The segregation power is accounted as a measure of the discrimination quality.