4 resultados para Linear transformations
em Universidad Politécnica de Madrid
Resumo:
A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
Non linear transformations are a good alternative for the numerical evaluation of singular and quasisingular integrals appearing in Boundary Element Method specially in the p-adaptive version. Some aspects of its numerical implementation in 2-D Potential codes is discussed and some examples are shown.
Resumo:
This work describes an experience with a methodology for learning based on competences in Linear Algebra for engineering students. The experience has been based in autonomous team work of students. DERIVE tutorials for Linear Algebra topics are provided to the students. They have to work with the tutorials as their homework. After, worksheets with exercises have been prepared to be solved by the students organized in teams, using DERIVE function previously defined in the tutorials. The students send to the instructor the solution of the proposed exercises and they fill a survey with their impressions about the following items: ease of use of the files, usefulness of the tutorials for understanding the mathematical topics and the time spent in the experience. As a final work, we have designed an activity directed to the interested students. They have to prepare a project, related with a real problem in Science and Engineering. The students are free to choose the topic and to develop it but they have to use DERIVE in the solution. Obviously they are guided by the instructor. Some examples of activities related with Orthogonal Transformations will be presented.