12 resultados para Linear free energy relationship.
em Universidad Politécnica de Madrid
Resumo:
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.
Resumo:
En la presente tesis desarrollamos una estrategia para la simulación numérica del comportamiento mecánico de la aorta humana usando modelos de elementos finitos no lineales. Prestamos especial atención a tres aspectos claves relacionados con la biomecánica de los tejidos blandos. Primero, el análisis del comportamiento anisótropo característico de los tejidos blandos debido a las familias de fibras de colágeno. Segundo, el análisis del ablandamiento presentado por los vasos sanguíneos cuando estos soportan cargas fuera del rango de funcionamiento fisiológico. Y finalmente, la inclusión de las tensiones residuales en las simulaciones en concordancia con el experimento de apertura de ángulo. El análisis del daño se aborda mediante dos aproximaciones diferentes. En la primera aproximación se presenta una formulación de daño local con regularización. Esta formulación tiene dos ingredientes principales. Por una parte, usa los principios de la teoría de la fisura difusa para garantizar la objetividad de los resultados con diferentes mallas. Por otra parte, usa el modelo bidimensional de Hodge-Petruska para describir el comportamiento mesoscópico de los fibriles. Partiendo de este modelo mesoscópico, las propiedades macroscópicas de las fibras de colágeno son obtenidas a través de un proceso de homogenización. En la segunda aproximación se presenta un modelo de daño no-local enriquecido con el gradiente de la variable de daño. El modelo se construye a partir del enriquecimiento de la función de energía con un término que contiene el gradiente material de la variable de daño no-local. La inclusión de este término asegura una regularización implícita de la implementación por elementos finitos, dando lugar a resultados de las simulaciones que no dependen de la malla. La aplicabilidad de este último modelo a problemas de biomecánica se estudia por medio de una simulación de un procedimiento quirúrgico típico conocido como angioplastia de balón. In the present thesis we develop a framework for the numerical simulation of the mechanical behaviour of the human aorta using non-linear finite element models. Special attention is paid to three key aspects related to the biomechanics of soft tissues. First, the modelling of the characteristic anisotropic behaviour of the softue due to the collagen fibre families. Secondly, the modelling of damage-related softening that blood vessels exhibit when subjected to loads beyond their physiological range. And finally, the inclusion of the residual stresses in the simulations in accordance with the opening-angle experiment The modelling of damage is addressed with two major and different approaches. In the first approach a continuum local damage formulation with regularisation is presented. This formulation has two principal ingredients. On the one hand, it makes use of the principles of the smeared crack theory to avoid the mesh size dependence of the structural response in softening. On the other hand, it uses a Hodge-Petruska bidimensional model to describe the fibrils as staggered arrays of tropocollagen molecules, and from this mesoscopic model the macroscopic material properties of the collagen fibres are obtained using an homogenisation process. In the second approach a non-local gradient-enhanced damage formulation is introduced. The model is built around the enhancement of the free energy function by means of a term that contains the referential gradient of the non-local damage variable. The inclusion of this term ensures an implicit regularisation of the finite element implementation, yielding mesh-objective results of the simulations. The applicability of the later model to biomechanically-related problems is studied by means of the simulation of a typical surgical procedure, namely, the balloon angioplasty.
Resumo:
A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed
Resumo:
An intermediate-bandphotovoltaicmaterial, which has an isolated metallic band located between the top of the valence band and bottom of the conduction band of some semiconductors, has been proposed as third generation solar cell to be used in photovoltaic applications. Density functional theory calculations of Zn in CuGaS2:Ti have previously shown that, the intermediate-band position can be modulated in proportion of Zn insertion in such a way that increasing Zn concentration can lead to aband-gap reduction, and an adjustment of the intermediate-band position. This could be interesting in the formation of an intermediate-bandmaterial, that has the maximum efficiency theoretically predicted for the intermediate-band solar cell. In this work, the energetics of several reaction schemes that could lead to the decomposition of the modulated intermediate-bandphotovoltaicmaterial, CuGaS2:Ti:Zn, is studied in order to assess the thermodynamic stability of this material. Calculations of the total free energy and disorder entropy have been taken into account, to get the reaction energy and free energy of the compound decomposition, which is found to be thermodynamically favorable
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.
Resumo:
Based on theoretical arguments, we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by screened hybrid functional calculations.
Resumo:
Dynamics of binary mixtures such as polymer blends, and fluids near the critical point, is described by the model-H, which couples momentum transport and diffusion of the components [1]. We present an extended version of the model-H that allows to study the combined effect of phase separation in a polymer blend and surface structuring of the film itself [2]. We apply it to analyze the stability of vertically stratified base states on extended films of polymer blends and show that convective transport leads to new mechanisms of instability as compared to the simpler diffusive case described by the Cahn- Hilliard model [3, 4]. We carry out this analysis for realistic parameters of polymer blends used in experimental setups such as PS/PVME. However, geometrically more complicated states involving lateral structuring, strong deflections of the free surface, oblique diffuse interfaces, checkerboard modes, or droplets of a component above of the other are possible at critical composition solving the Cahn Hilliard equation in the static limit for rectangular domains [5, 6] or with deformable free surfaces [6]. We extend these results for off-critical compositions, since balanced overall composition in experiments are unusual. In particular, we study steady nonlinear solutions of the Cahn-Hilliard equation for bidimensional layers with fixed geometry and deformable free surface. Furthermore we distinguished the cases with and without energetic bias at the free surface. We present bifurcation diagrams for off-critical films of polymer blends with free surfaces, showing their free energy, and the L2-norms of surface deflection and the concentration field, as a function of lateral domain size and mean composition. Simultaneously, we look at spatial dependent profiles of the height and concentration. To treat the problem of films with arbitrary surface deflections our calculations are based on minimizing the free energy functional at given composition and geometric constraints using a variational approach based on the Cahn-Hilliard equation. The problem is solved numerically using the finite element method (FEM).
Resumo:
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water repellent abaxial holm oak leaf sides. The surface free energy, polarity and solubility parameter decreased with leaf age, with generally higher values determined for the abaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical-chemistry, and plant ecophysiology.
Resumo:
El objetivo de este trabajo es conocer las posibles modificaciones que puede producir en el comportamiento de las estructuras de hormigón armado (EHA) el hecho de que sean utilizadas como estructuras termoactivas, ya sea como intercambiadores en contacto con el terreno, o como sistema de distribución de calor utilizando la inercia térmica de los elementos de hormigón del edificio, basándose en el uso de energías renovables. Las EHA termoactivas se caracterizan por la incorporación en su interior de tubos de polietileno por los que circulan fluidos a temperaturas medias, que pueden incidir en el comportamiento mecánico de los elementos estructurales debido a dos efectos fundamentales: el incremento de temperatura que se produce en el interior de la EHA y la perturbación provocada por la incorporación de los tubos de polietileno. Con este fin, se ha realizado una campaña experimental de probetas de hormigón, estudiando los dos efectos por separado, por un lado se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30 sometidas a cuatro temperaturas diferentes: 20ºC, 40ºC, 70ºC y 100ºC, ensayando la resistencia a compresión y la resistencia a anclaje/adherencia mediante ensayo “pull-out”; y, por otro lado, se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30, elaboradas con dos tipos de molde (cilíndrico y cúbico), en las que se ha colocado tubos de polietileno en su interior en distintas posiciones, ensayando su resistencia a compresión. Los resultados de los ensayos han puesto de manifiesto que aunque se produce una disminución en la resistencia a compresión, y a arrancamiento, del hormigón, al ser sometido a aumentos de temperatura, esta disminución de la propiedades mecánicas es inferior al 20% al no superar esta tecnología los 70ºC; y respecto a la variación de la resistencia a compresión de probetas cilíndricas y cúbicas, debidas a la incorporación de los tubos de polietileno, se observa que si la posición de los mismos es paralela a la dirección de la carga tampoco se ven comprometidas las propiedad mecánicas del hormigón en valores superiores al 20%. ABSTRACT The aim of this project is to study the effects of using concrete structures as thermo-active constructions, either as energy foundations or other kind of thermo-active ground structures, or as a thermally activated building structure utilizing its own thermal mass conductivity and storage capacity to heat and cool buildings, based on renewable or “free” energy sources. The pipes, filled with a heat carrier fluid, that are embedded into the building´s concrete elements may bring on two different adverse effects on concrete structures. In one hand, the consequence of thermal variations and, on the other hand, because of the fact that the pipes are inside of the concrete mortar and in direct contact with the reinforcing steel bars. For this reason, different types of specimens and testing procedures have been proposed to discuss the effects of temperature (20º, 40ºC, 70ºC y 100ºC) on the performance of two different hardened concrete: H-25 and H-30, and the effects of having the pipes embedded in different positions inside of specimens made of two types of concrete, H-25 and H-30, and with two kind of cast, cylindrical and cubical. The experimental program includes the use of compressive strength test and also pull-out test, in order to investigate the interfacial adhesion quality and interfacial properties between steel bar and concrete. The results of the mechanical test showed that the increase of temperature in hardened concrete specimens lower than 70ºC, and the introduction of embedded pipes placed in parallel to the load, in cylindrical or cubic specimens, does not jeopardize the mechanical properties of concrete with strength decreases higher than 20%.
Resumo:
Poly(3-hydroxybutyrate) (PHB) nanocomposites containing environmentally-friendly tungsten disulphide inorganic nanotubes (INTeWS2) have been successfully prepared by a simple solution blending method. The dynamic and isothermal crystallization studies by differential scanning calorimetry (DSC) demonstrated that the INTeWS2 exhibits much more prominent nucleation activity on the crystallization of PHB than specific nucleating agents or other nanoscale fillers. Both crystallization rate and crystallinity significantly increase in the nanocomposites compared to neat PHB. These changes occur without modifying the crystalline structure of PHB in the nanocomposites, as shown by wide-angle X-ray diffraction (WAXS) and infrared/Raman spectroscopy. Other parameters such as the Avrami exponent, the equilibrium melting temperature, global rate constant and the fold surface free energy of PHB chains in the nanocomposites were obtained from the calorimetric data in order to determine the influence of the INTeWS2 filler. The addition of INTeWS2 remarkably influences the energetics and kinetics of nucleation and growth of PHB, reducing the fold surface free energy by up to 20%. Furthermore, these nanocomposites also show an improvement in both tribological and mechanical (hardness and modulus) properties with respect to pure PHB evidenced by friction and nanoindentation tests, which is of important potential interest for industrial and medical applications.