20 resultados para Libertad de elección

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se hace un análisis de los distintos aperos para la labor del suelo, señalando las principales ventajes e inconvenientes de los mismos y, consecuentemente, las condiciones más favoralbes para su utilización. Además, se detalla la sucesión de labores que frecuentemente se realizan en el norte del Valle del Ebro sobre cultivos de maíz y cereal de invierno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El sistema de apertura del surco define las características del tren de siembra en las sembradoras de siembra directa. Actualmente existen dos sistemas de apertura del surco: disco o reja. En este artículo se aportan criterios que facilliten la elección por parte del agricultor de un tren de siembra adecuado en función de las características de su explotación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicación de la "Casa Olnik Spanu" en revista argentina. La publicación contiene textos del autor, fotografías, dibujos planimétricos y croquis del proceso de ideación. La "Casa Olnik Spanu" culmina una serie de investigaciones sobre la relación entre la cabaña y la cueva (levedad y gravedad) y la construcción del horizonte como dispositivo para relacionarse con el paisaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

¿Qué han hecho los ciudadanos que se desplazan en coche para que tantos grupúsculos, grupos, organismos y medios estén empeñados en restringir este estupendo modo de desplazamiento? ¿Están justificados tantos ataques? ¿Hay recursos técnicos para ordenar la situación, ajustando la libertad a sus límites y dando y pidiendo responsabilidades a los conductores, a otros actores y a la Administración? Para empezar, necesitamos términos nuevos. Acompañante no es un término correcto para un viajero que no conduce. Parecería que, no teniendo nada mejor que hacer, se mete en el coche con el conductor (un estudio reseñado en La Vanguardia afirma que el 33,3% % de los desplazamientos de las mujeres catalanas se hacen en coche, pero ellas prefieren viajar sin conducir). Por su parte, conductores son unos cuantos, pero esto queda bastante lejos de todos los que manejan un coche. La misma denominación de conductor trae a la cabeza a alguien cuyo primer objetivo es conducir, y esto no suele ser cierto: es desplazarse con otro motivo, no es pasear en coche sin más. Cochero no parece un término adecuado. Viajero individual tampoco. Pero necesitamos que el lenguaje refleje la realidad: los que llamamos conductores son viajeros, o pasajeros (aunque no compren un pasaje).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La motivación de los alumnos es fundamental para el estudio-aprendizaje, y el sistema de evaluación juega un papel básico en la misma. El planteamiento de actividades coevaluadas puede ayudar a que los alumnos tengan un mayor interés al ser evaluados por un igual. Por otro lado, el incremento de las reclamaciones que hemos observado últimamente, hace pensar que los criterios aplicados en la corrección y el grado de exigencia en los exámenes no han sido asumidos por el alumnado. En esta experiencia se han propuesto dos tipos de ejercicios a realizar y coevaluar por dos grupos el primero realizó una pregunta teórica a desarrollar y un problema, el segundo siete preguntas teóricas cortas. Los alumnos tenían total libertad para la elección de los criterios de corrección en todos los apartados y en el peso de cada apartado. Una vez corregidos por los alumnos, los ejercicios fueron corregidos por los profesores de la asignatura. Los resultados obtenidos muestran que los criterios de corrección de los alumnos son menos exigentes que los de los profesores, especialmente en ejercicios abiertos. Además se han comprobado que en grupos donde hay poca interacción entre alumnos, éstos no muestran preocupación por quedar bien ante los compañeros

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se presenta el diseño de un sistema avanzado de democracia digital, con énfasis en la protección a la libertad de expresión de los ciudadanos, ofrecida mediante el empleo de tarjetas inteligentes y mecanismos avanzados de seguridad. Se regulan los procedimientos de obtención de alias para conseguir la participación anónima de quien lo desee, garantizando que con su uso se oculta la identidad real del usuario (incluso al propio sistema), asegurando, en todos los casos, que únicamente las personas autorizadas pueden participar en el foro correspondiente y proporcionando garantía de integridad de la información, tanto en tránsito como almacenada. Asimismo, los ciudadanos disponen de pruebas criptográficas robustas que les permiten evidenciar cualquier funcionamiento anómalo del sistema que pudiera desembocar en la destrucción o modificación de opiniones y en la consiguiente alteración de las conclusiones o resultados de la participación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante mucho tiempo se han estudiado los efectos producidos por el impacto de objetos sobre estructuras, inicialmente la gran mayoría de los estudios se centraban en el impacto de proyectiles de tipo balístico dado el interés que se tenía en el diseño de estructuras capaces de soportar el impacto de dichos proyectiles. Dada la falta de capacidad de cálculo para resolver el problema que tuviera en cuenta el comportamiento global de la estructura junto con el comportamiento local, los estudios se centraban básicamente en la zona de impacto. El momento en el cual se pueden realizar cálculos que requieren de múltiples iteraciones para llegar a una solución satisfactoria al complejo problema planteado no se produce hasta la llegada de los modernos ordenadores. En el presente estudio se establece un sistema de múltiples grados de libertad (SMDF, System of Multiple Degrees of Freedom), que permite el estudio del impacto de una roca sobre una viga de hormigón armado teniendo en cuenta factores que afectan al ámbito local y global de la estructura analizada. El sistema se resuelve a través de un método de resolución implícita como es el método de Newmark, el cual nos permite, sin tener que acceder a un programa de elementos finitos, obtener una solución suficientemente aproximada al problema planteado con un coste computacional relativamente bajo. En el documento se comprueba el modelo propuesto con los resultados existentes de unos ensayos a escala real, y se plantean diversas hipótesis analizando las diferentes respuestas del sistema a la variación de las condiciones de partida. The effects produced by the impact of objects on structures have been studied for a long time. Initially, the vast majority of studies focused on the impact of ballistic missiles, due to the particular interest in the design of these structures being capable to withstand the impact such projectiles. Due to the lack of calculation capacity to solve the problem of taking into account the global behavior of the structure together with the local behavior, the studies focused mainly on the impact zone. The moment in which calculations that required multiple iterations could be performed with satisfactory solutions for the complex problem presented did not arrive until the introduction of modern computers. The present study establishes a System of Multiple Degrees of Freedom, which allows the study of the impact of a rock on a reinforced concrete beam, taking into account factors that affect the local and global behavior of the structure analyzed. The system is solved using an implicit solution method as is the Newmark method, which allows us, without using a finite element program, to obtain a sufficiently approximate solution to the problem with a relatively low computational cost. This paper tests the proposed model with existing results obtained in large-scale tests, and analyses the response of the system to various changing scenarios to the starting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El modelo matemático más sencillo para representar el sistema con un grado de libertad está formado por el acoplamiento de dos elementos: una masa que se mueve con respecto al sistema de referencia y unido a ella un muelle de comportamiento lineal. Hay otro modelo ligeramente más complicado en el que se halla presente, además de la masa y el muelle, un elemento que reacciona linealmente con una fuerza proporcional a la velocidad del desplazamiento, denominado émbolo. En el análisis de ambos modelos matemáticos, se consideran una serie de cuestiones complementarias: los movimientos inducidos por el soporte, la carga proporcional a la frecuencia de impulsión, la energía del sistema vibrante y el amortiguamiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivos: Analizar la utilización de una u otra pierna como pierna de ataque predominante en atletas de 400 m vallas de alto nivel. Método: El estudio es descriptivo de corte transversal. Se estudiaron todas las carreras de 400 m vallas de los 72 participantes (34 hombres y 38 mujeres) en los XIII Campeonatos del Mundo de Atletismo Daegu 2011, mediante la grabación en video desde la tribuna principal del Daegu Stadium de las 18 carreras de 400 m vallas disputadas, y el posterior análisis mediante la aplicación informática Kinovea 0.8.4. Resultados: Por atletas, en el total de las carreras masculinas, la pierna de ataque predominante fue la izquierda con un 63,6 % (42 atletas) y con la pierna derecha hubo un 34,8 % (23 atletas). Solo en un caso había un equilibrio entre izquierda y derecha. En la final hubo un 75 % (6 atletas) cuya pierna predominante de ataque fue la izquierda. En cuanto a las mujeres, la pierna de ataque predominante fue la izquierda con un 48,6 % seguida de la pierna derecha con un 41,4 % y para el 10 % había un equilibrio de las dos. En la final, en cambio, la pierna predominante de ataque fue la derecha con un 87,5 % (7 atletas) por un 12,5 % de la izquierda (1 sola atleta). Se encontraron diferencias significativas (p = 0,018) en la media de tiempo final de los atletas masculinos según cual fuera su pierna de ataque. Conclusiones: La mayoría de los atletas atacan las vallas con derecha e izquierda en algún momento de la carrera, lo que obliga al dominio técnico bilateral. La pierna de ataque más utilizada es la izquierda, aunque en menor medida en el caso de las mujeres. Por primera vez en una gran competición, 7 de las 8 finalistas tienen la pierna derecha como pierna predominante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Casa del Infinito, en Zahara de los Atunes, es su último proyecto. Su obra concentra la esencia constructiva del arquitecto por excelencia de espacios sobrios y diáfanos erigidos en torno a la luz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(SPA) La elección de localizaciones para la implantación de actividades industriales es un problema complejo, donde a los criterios de coste y eficiencia se han ido añadiendo otros nuevos relativos tanto al impacto en el medio ambiente como a la imagen de la empresa reflejada en la Responsabilidad Social Empresarial. Los criterios medioambientales han ido adquiriendo gran relevancia en la decisión final, hasta convertirse, gracias a la obligación de someter los proyectos a evaluación ambiental, en elementos clave en la decisión final. Por ello, resulta relativamente frecuente que los promotores consulten previamente con la Administración sobre la viabilidad de sus proyectos antes de iniciar un dilatado procedimiento administrativo. En este trabajo se plantea la utilización de indicadores de sostenibilidad y su aplicación, a través de un modelo de decisiones multicriterio, para la ordenación de las distintas opciones de ubicación inicialmente consideradas, de tal forma que se conviertan en instrumento de tanteo y ayuda en la toma de estas decisiones. Para mostrar su utilidad se propone la utilización de la herramienta de apoyo basada en la metodología PROMETHEE y su aplicación en la ordenación de cinco emplazamientos alternativos para la instalación de una cementera en la Comunidad de Madrid según criterios de sostenibilidad. (ENG) The choice of locations for the implementation of industrial activities is a complex problem where the cost and efficiency criteria have been adding new ones relating to the environment impact and the company’s corporate image reflected in Corporate Social Responsability. The environmental criteria have been getting big importance in the final decision, to become key elements in the final decision, due to the duty of submit of environmental assessment projects. Therefore, promoters, quite often, ask previously to the Administration about the viability of their projects before starting a lengthy administrative procedure. This paper proposes the use of sustainability indicators and their application through a multi-criteria decision model for managing the establishment options initially considered, so that they become an help instrument of estimation in order to making these decisions. To show its usefulness we propose the use of the support tool for decision making based on the PROMETHEE methodology and its application in the management of 5 alternative sites for the installation of a cement factory in the Community of Madrid under sustainability criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La regulación sobre la inclusión de medios de apoyo (subtítulos, audiodescripción y lengua de signos) en medios de comunicación audiovisual normalmente responde a cuestiones sobre cuánta programación debe incluir estos medios de apoyo y cómo deben ser sus características técnicas y funcionales. Sin embargo, deja al arbitrio del prestador del servicio la elección de cuáles son los contenidos concretos a los que aplicar los medios de apoyo. El presente trabajo pretende definir una serie de criterios para escoger los programas a los que aplicar los medios de apoyo. Dada la indefinición legal existente en ese aspecto en España, se parte de la forma de resolver este problema en otros territorios, de donde se abstraen una serie de criterios comunes y se clasifican en categorías más generales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La existencia de sistemas y teorías que preten den establecer un método objetivo y transferible defienden una postura "científica" en la respuesta arquitectónica sin emplear elementos arbitrarios ni intuitivos propios de ?lo artístico-simbólico?. Estas teorías defienden el uso de distintos repertorios, unas veces analizando los patrones históricos inmanentes a la arquitectura en su dimensión espacio-temporal, otros recurren a la pura combinatoria aritmética de distintas soluciones a un mismo problema.