23 resultados para Levure à fission
em Universidad Politécnica de Madrid
Resumo:
The engineering design of fissionchambers as on-line radiation detectors for IFMIF is being performed in the framework of the IFMIF-EVEDA works. In this paper the results of the experiments performed in the BR2 reactor during the phase-2 of the foreseen validation activities are addressed. Two detectors have been tested in a mixedneutron-gamma field with high neutron fluence and gamma absorbed dose rates, comparable with the expected values in the HFTM in IFMIF. Since the neutron spectra in all BR2 channels are dominated by the thermal neutron component, the detectors have been surrounded by a cylindrical gadolinium screen to cut the thermal neutron component, in order to get a more representative test for IFMIF conditions. The integrated gamma absorbed dose was about 4 × 1010 Gy and the fast neutron fluence (E > 0.1 MeV) 4 × 1020 n/cm2. The fissionchambers were calibrated in three BR2 channels with different neutron-to-gamma ratio, and the long-term evolution of the signals was studied and compared with theoretical calculations
Resumo:
PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries
Resumo:
GRS Results for the Burnup Pin-cell Benchmark Propagation of Cross-Section, Fission Yields and Decay Data Uncertainties
Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations
Resumo:
Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations
Resumo:
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)
Resumo:
The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.
Resumo:
Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.
Resumo:
Propagation of nuclear data uncertainties to calculated values is interesting for design purposes and libraries evaluation. XSUSA, developed at GRS, propagates cross section uncertainties to nuclear calculations. In depletion simulations, fission yields and decay data are also involved and suppose a possible source of uncertainty that must be taken into account. We have developed tools to generate varied fission yields and decay libraries and to propagate uncertainties trough depletion in order to complete the XSUSA uncertainty assessment capabilities. A simple test to probe the methodology is defined and discussed.
Resumo:
The assessment of the accuracy of parameters related to the reactor core performance (e.g., ke) and f el cycle (e.g., isotopic evolution/transmutation) due to the uncertainties in the basic nuclear data (ND) is a critical issue. Different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainties on the final parameters. To perform this uncertainty assessment, the ENDF covariance les (variance/correlation in energy and cross- reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code.
Resumo:
Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields
Resumo:
The uncertainty propagation in fuel cycle calculations due to Nuclear Data (ND) is a important important issue for : issue for : • Present fuel cycles (e.g. high burnup fuel programme) • New fuel cycles designs (e.g. fast breeder reactors and ADS) Different error propagation techniques can be used: • Sensitivity analysis • Response Response Surface Method Surface Method • Monte Carlo technique Then, p p , , in this paper, it is assessed the imp y pact of ND uncertainties on the decay heat and radiotoxicity in two applications: • Fission Pulse Decay ( y Heat calculation (FPDH) • Conceptual design of European Facility for Industrial Transmutation (EFIT)
Resumo:
For a number of important nuclides, complete activation data libraries with covariance data will be produced, so that uncertainty propagation in fuel cycle codes (in this case ACAB,FISPIN, ...) can be developed and tested. Eventually, fuel inventory codes should be able to handle the complete set of uncertainty data, i.e. those of nuclear reactions (cross sections, etc.), radioactive decay and fission yield data. For this, capabilities will be developed both to produce covariance data and to propagate the uncertainties through the inventory calculations.
Resumo:
Finding adequate materials to withstand the demanding conditions in the future fusion and fission reactors is a real challenge in the development of these technologies. Structural materials need to sustain high irradiation doses and temperatures that will change the microstructure over time. A better understanding of the changes produced by the irradiation will allow for a better choice of materials, ensuring a safer and reliable future power plants. High-Cr ferritic/martensitic steels head the list of structural materials due to their high resistance to swelling and corrosion. However, it is well known that these alloys present a problem of embrittlement, which could be caused by the presence of defects created by irradiation as these defects act as obstacles for dislocation motion. Therefore, the mechanical response of these materials will depend on the type of defects created during irradiation. In this work, we address a study of the effect Cr concentration has on single interstitial defect formation energies in FeCr alloys.
Resumo:
This work is aimed to present the main differences of nuclear data uncertainties among three different nuclear data libraries: EAF-2007, EAF-2010 and SCALE-6.0, under different neutron spectra: LWR, ADS and DEMO (fusion). To take into account the neutron spectrum, the uncertainty data are collapsed to onegroup. That is a simple way to see the differences among libraries for one application. Also, the neutron spectrum effect on different applications can be observed. These comparisons are presented only for (n,fission), (n,gamma) and (n,p) reactions, for the main transuranic isotopes (234,235,236,238U, 237Np, 238,239,240,241Pu, 241,242m,243Am, 242,243,244,245,246,247,248Cm, 249Bk, 249,250,251,252Cf). But also general comparisons among libraries are presented taking into account all included isotopes. In other works, target accuracies are presented for nuclear data uncertainties; here, these targets are compared with uncertainties on the above libraries. The main results of these comparisons are that EAF-2010 has reduced their uncertainties for many isotopes from EAF-2007 for (n,gamma) and (n,fission) but not for (n,p); SCALE-6.0 gives lower uncertainties for (n,fission) reactions for ADS and PWR applications, but gives higher uncertainties for (n,p) reactions in all applications. For the (n,gamma) reaction, the amount of isotopes which have higher uncertainties is quite similar to the amount of isotopes which have lower uncertainties when SCALE-6.0 and EAF-2010 are compared. When the effect of neutron spectra is analysed, the ADS neutron spectrum obtained the highest uncertainties for (n,gamma) and (n,fission) reactions of all libraries.
Resumo:
Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER.