2 resultados para Leonidas, I, King of Sparta, d. 480 B.C.
em Universidad Politécnica de Madrid
Resumo:
After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.
Resumo:
A consistent Finite Element formulation was developed for four classical 1-D beam models. This formulation is based upon the solution of the homogeneous differential equation (or equations) associated with each model. Results such as the shape functions, stiffness matrices and consistent force vectors for the constant section beam were found. Some of these results were compared with the corresponding ones obtained by the standard Finite Element Method (i.e. using polynomial expansions for the field variables). Some of the difficulties reported in the literature concerning some of these models may be avoided by this technique and some numerical sensitivity analysis on this subject are presented.