9 resultados para Leibniz Condition
em Universidad Politécnica de Madrid
Resumo:
The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [Prog. Theor. Phys. 92 (1994), 939] boundary integrals. The analysis has been carried out by studying the convergence of the first- and second-order differential operators as the smoothing length (that is, the characteristic length on which relies the SPH interpolation) decreases. These differential operators are of fundamental importance for the computation of the viscous drag and the viscous/diffusive terms in the momentum and energy equations. It has been proved that close to the boundaries some of the mirroring techniques leads to intrinsic inaccuracies in the convergence of the differential operators. A consistent formulation has been derived starting from Takeda et al. boundary integrals (see the above reference). This original formulation allows implementing no-slip boundary conditions consistently in many practical applications as viscous flows and diffusion problems.
Resumo:
The implementation of boundary conditions is one of the points where the SPH methodology still has some work to do. The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [1] boundary integrals. A Pouseuille flow has been used as a example to gradually evaluate the accuracy of the different implementations. Our goal is to test the behavior of the second-order differential operator with the proposed boundary extensions when the smoothing length h and other dicretization parameters as dx/h tend simultaneously to zero. First, using a smoothed continuous approximation of the unidirectional Pouseuille problem, the evolution of the velocity profile has been studied focusing on the values of the velocity and the viscous shear at the boundaries, where the exact solution should be approximated as h decreases. Second, to evaluate the impact of the discretization of the problem, an Eulerian SPH discrete version of the former problem has been implemented and similar results have been monitored. Finally, for the sake of completeness, a 2D Lagrangian SPH implementation of the problem has been also studied to compare the consequences of the particle movement
Resumo:
Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.
Resumo:
Reverberation chambers are well known for providing a random-like electric field distribution. Detection of directivity or gain thereof requires an adequate procedure and smart post-processing. In this paper, a new method is proposed for estimating the directivity of radiating devices in a reverberation chamber (RC). The method is based on the Rician K-factor whose estimation in an RC benefits from recent improvements. Directivity estimation relies on the accurate determination of the K-factor with respect to a reference antenna. Good agreement is reported with measurements carried out in near-field anechoic chamber (AC) and using a near-field to far-field transformation.
Resumo:
A UTD solution is developed for describing the scattering by a circular cylinder with an impedance boundary condition (IBC), when it is illuminated by an obliquely incident electromagnetic (EM) plane wave. The solution to this canonical problem will be crucial for the construction of a more general UTD solution valid for an arbitrary smooth convex surface with an IBC, when it is illuminated by an arbitrary EM ray optical field. The canonical solution is uniformly valid across the surface shadow boundary that is tangent to the surface at grazing incidence. This canonical solution contains cross polarized terms in the scattered fields, which arise from a coupling of the TEz and TMz waves at the impedance boundary on the cylinder. Here, z is the cylinder axis. Numerical results show very good accuracy for the simpler and efficient UTD solution, when compared to exact but very slowly convergent eigenfunction solution.
Resumo:
In tethered satellite technology, it is important to estimate how many electrons a spacecraft can collect from its ambient plasma by a bare electrodynamic tether. The analysis is however very difficult because of the small but significant Geo-magnetic field and the spacecraft’s relative motion to both ions and electrons. The object of our work is the development of a numerical method, for this purpose. Particle-In-Cell (PIC) method, for the calculation of electron current to a positive bare tether moving at orbital velocity in the ionosphere, i.e. in a flowing magnetized plasma under Maxwellian collisionless conditions. In a PIC code, a number of particles are distributed in phase space and the computational domain has a grid on which Poisson equation is solved for field quantities. The code uses the quasi-neutrality condition to solve for the local potential at points in the plasma which coincide with the computational outside boundary. The quasi-neutrality condition imposes ne - ni on the boundary. The Poisson equation is solved in such a way that the presheath region can be captured in the computation. Results show that the collected current is higher than the Orbital Motion Limit (OML) theory. The OML current is the upper limit of current collection under steady collisionless unmagnetized conditions. In this work, we focus on the flowing effects of plasma as a possible cause of the current enhancement. A deficit electron density due to the flowing effects has been worked and removed by introducing adiabatic electron trapping into our model.
Resumo:
The analysis of the harmonic terms related to the rotational speed of a cup anemometer is a way to detect anomalies such as wear and tear, rotor non-symmetries (rotor damage) or problems at the output signal system. The research already done in this matter at the IDR/UPM Institute is now taken to cup anemometers working on the field. A 1-2 year testing campaign is being carried out in collaboration with Kintech Engineering. 2 Thies First Class Advanced installed at 58 m and 73 m height in a meteorology tower are constantly monitored. The results will be correlated to the anemometer performance evolution studied through several calibrations planned to be performed along the testing campaign.
Resumo:
Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que realizan las simulaciones y los médicos que operan en el quirófano. Por otra parte, los métodos de cálculo más simplificados reducen el tiempo de cálculo pero pueden proporcionar resultados no realistas. El objetivo de esta tesis es combinar los conceptos de autorregulación e impedancia del sistema circulatorio, la interacción flujo sanguíneo-pared arterial y modelos geométricos idealizados tridimensionales de las arterias pero sin pérdida de realismo, con objeto de proponer una metodología de simulación que proporcione resultados correctos y completos, con tiempos de cálculo moderados. En las simulaciones numéricas, las condiciones de contorno basadas en historias de presión presentan inconvenientes por ser difícil conocerlas con detalle, y porque los resultados son muy sensibles ante pequeñas variaciones de dichas historias. La metodología propuesta se basa en los conceptos de autorregulación, para imponer la demanda de flujo aguas abajo del modelo en el ciclo cardiaco, y la impedancia, para representar el efecto que ejerce el flujo en el resto del sistema circulatorio sobre las arterias modeladas. De este modo las historias de presión en el contorno son resultados del cálculo, que se obtienen de manera iterativa. El método propuesto se aplica en una geometría idealizada del arco aórtico sin patologías y en otra geometría correspondiente a una disección Stanford de tipo A, considerando la interacción del flujo pulsátil con las paredes arteriales. El efecto de los tejidos circundantes también se incorpora en los modelos. También se hacen aplicaciones considerando la interacción en una geometría especifica de un paciente anciano que proviene de una tomografía computarizada. Finalmente se analiza una disección Stanford tipo B con tres modelos que incluyen la fenestración del saco. Clinicians demand fast and reliable numerical results of cardiovascular biomechanic simulations for their urgent pre-surgery decissions. Researchers during many years have work on different numerical methods in order to attract the clinicians' confidence to their colorful contours. Though precise but expensive and time-consuming methodologies create a gap between numerical biomechanics and hospital personnel. On the other hand, simulation simplifications with the aim of reduction in computational time may cause in production of unrealistic outcomes. The main objective of the current investigation is to combine ideas such as autoregulation, impedance, fluid-solid interaction and idealized geometries in order to propose a computationally cheap methodology without excessive or unrealistic simplifications. The pressure boundary conditions are critical and polemic in numerical simulations of cardiovascular system, in which a specific arterial site is of interest and the rest of the netwrok is neglected but represented by a boundary condition. The proposed methodology is a pressure boundary condition which takes advantage of numerical simplicity of application of an imposed pressure boundary condition on outlets, while it includes more sophisticated concepts such as autoregulation and impedance to gain more realistic results. Incorporation of autoregulation and impedance converts the pressure boundary conditions to an active and dynamic boundary conditions, receiving feedback from the results during the numerical calculations and comparing them with the physiological requirements. On the other hand, the impedance boundary condition defines the shapes of the pressure history curves applied at outlets. The applications of the proposed method are seen on idealized geometry of the healthy arotic arch as well as idealized Stanford type A dissection, considering the interaction of the arterial walls with the pulsatile blood flow. The effect of surrounding tissues is incorporated and studied in the models. The simulations continue with FSI analysis of a patient-specific CT scanned geometry of an old individual. Finally, inspiring of the statistic results of mortality rates in Stanford type B dissection, three models of fenestrated dissection sac is studied and discussed. Applying the developed boundary condition, an alternative hypothesis is proposed by the author with respect to the decrease in mortality rates in patients with fenestrations.
Resumo:
Alison Margaret Gill y Peter Denham Smithson son, o eran, ambos murieron hace ya algunos años, dos arquitectos. Así dicho, esto suena a obviedad. Sin embargo no lo es, porque siempre han sido compactados en una unidad proyectual, bien bajo las siglas Alison y Peter Smithson, o bien, más puntualmente todavía, como los Smithson. Cuando Leibniz en 1696 le dice a la princesa electora Sofía que en algo tan puntual y homogéneo aparentemente como una gota de agua, vista al microscopio, resulta haber más de un millón de animales vivos, se puede empezar a vislumbrar el resultado de la Tesis. El resultado de este trabajo no se contempla un millón de partículas pero sí dos. La obra de Alison y Peter Smithson esta conformada desde su inicio probablemente por la particularidad de que en ella intervienen tanto Gill como Smithson, aunque cada uno sea en mayor o menor medida la o el responsable de un proyecto. Puesto al microscopio el proyecto del que se ocupa la Tesis, el concurso de 1953 para la ampliación de la Universidad de Sheffield, se estima que está compuesto de dos partes diferentes y que como Los Smithson o como una gota de agua, su unidad es una mera convención, una forma de designarlo y tratarlo, que falsea en algo su apreciación, aunque, como se verá, es lo que provoca el extraño efecto que como imagen ejerce. El Capítulo I descubre la duplicidad. Reyner Banham fijó en 1955, en el artículo The New Brutalism, el modo de encarar el proyecto de Sheffield cuando proyectó sobre él lo más novedoso que en el campo de la pintura ocurría en ese momento, el Art Autre. Michel Tapié ve en el informalismo presente en las obras que él engloba como un <> rasgos que puede presentar a la luz de conceptos que extrae de Riemann, matemático del s. XIX, introductor de una nueva geometría. La Tesis remonta por tanto hasta Riemann, a la búsqueda del concepto del que penden tanto Tapié como Banham. El concepto es la variedad continua; un conjunto, cuyos elementos pueden recorrer la extensión de la variedad mediante una deformación continua, como si dijéramos, diluyéndose unos en otros sin cortes entre sí. Los ejemplos del informalismo serían, por tanto, los puntos de la variedad, formas inestables o detenciones aleatorias en este transitar continuo de un mismo objeto. La visión de cuerpos en cortes aleatorios a la evolución otorga a sus formas cualesquiera la condición de extrañeza o perturbación, produciendo un impacto en la mente que lo graba instintivamente en la materia de la memoria. Así, es la memorabilidad, dada precisamente por el impacto que supone ver cuerpos en estado evolutivo, sin una forma precisa, la propiedad que gobierna a los objetos que caen bajo el Art Autre, y es la memorabilidad el rasgo distintivo de Sheffield para Banham. Este sentido evolutivo que se puede asociar a los elementos de una variedad entra en consonancia con una variedad de estados en evolución en el marco de las especies orgánicas. No sólo como individuo sino también como especie. La coincidencia no sólo es formal, también es temporal entre el descubrimiento de Riemann de la variedad continua y el de Darwin de la evolución de las especies. Ve Darwin que algunos ejemplares presentan en su cuerpo conformaciones normales de especies diferentes, que puede entenderse como una anormalidad o defecto evolutivo, lo que él llama <>. Un ejemplar monstruoso no es capaz de abrir una escisión de la variedad y en este sentido rompe su cadena evolutiva. Es un elemento, por tanto extraño a la variedad. Lo peculiar que expone Darwin, es que la monstruosidad puede ser provocada artificialmente por motivos estéticos, como ocurre en determinados animales o plantas ornamentales. Bien, esto es exactamente lo que descubre la Tesis en el proyecto de Sheffield. La unión en un solo proyecto de dos conformaciones de naturaleza diferente. El Capítulo II indaga en la naturaleza dual de Sheffield. Y la descubre en la aplicación de dos principios que tienen múltiples derivas, pero interesante en una en particular, referida al espacio. Uno es el Principio de Posición. Bajo él se contempla la situación del concurso dada en su globalidad, en una visión totalizadora que permite buscar y destacar posiciones singulares y tener un control preciso del proyecto desde el inicio. Se dice que es la opción normal en arquitectura comprender el espacio en su conjunto y que el trazado de ejes y el reparto del espacio obedecen a este principio. Son así vistos la propuesta ganadora del equipo GMW y fundamentalmente el trazado de ejes en la obra de Le Corbusier. Una parte de Sheffield es un producto típico de este modo de proceder. Hay un segundo principio que es el Principio de Transición Continua. En los términos expuestos para la variedad de Riemann, sería como si en lugar de ver cuerpos en estados concretos, por deformados que pudieran ser, nos introdujéramos dentro de la propia variedad acoplándonos al curso de la evolución misma, en un acto de unión interior con la marcha de la evolución. Para ejercer esta acción se toma como punto inicial el extremo del edificio universitario existente, el Firth Court, y se lleva cabo un estiramiento continuo. En esto radica lo que la Tesis distingue como la ampliación, el cuerpo que se enrosca paulatinamente. Para exponer este concepto, la Tesis se apoya en un ejercicio llevado a cabo por Raymond Unwin en Hampstead, el close, o estiramiento lateral del borde de un viario para hacer surgir el espacio útil residencial. A partir del concepto de close, se deriva en la urbanística americana de principios del s. XX el concepto de cluster, que pasa a ser uno de los argumentos principales de la teoría de Alison y de Peter Smithson en los años 50. El Capítulo III plantea la dificultad de mantener la dualidad de Sheffield a primeros de los 50, sometido el proyecto de arquitectura a la unicidad que impone el criterio hegemónico de Rudolf Wittkower desde “Los Fundamentos de la Arquitectura en la Edad del Humanismo”. Como en el Capítulo I, la obligación que se traza la Tesis es remontar los orígenes de las cosas que se tratan, y en este caso, entrar en las fuentes del principio proporcional. Se descubren así los fundamentos de la proporción aritmética y geométrica en el seno del pitagorismo, sus problemas y su evolución. La postura de los dos arquitectos frente a Wittkower es de admiración, pero también de libertad. Esta libertad suya es la que defiende la Tesis. Cotejando lo que da de sí la arquitectura basada en los principios proporcionales con otra arquitectura estancada en el paso del Renacimiento al Barroco como es la arquitectura perspectiva y proyectiva, la arquitectura oblicua, recuperada a la sazón por medio de la intervención en la Tesis de Panofsky, se dirimen aspectos colaterales pero fundamentales de una renovación de los planteamientos: hay planteamientos que se dicen esencialistas y objetivos y otros funcionales y que derivan en subjetivos y relacionales. Sobre estas dos marcos de categorías el propósito que persigue la Tesis es dar cuenta de los dos principios que rigen lo visto en el Capítulo II, el Principio de Posición y el Principio de Transición Continua, responsables ambos, al 50%, de la monstruosidad detectada en Sheffield, que no es negativa, sino, como decía Darwin, la combinación en un solo cuerpo de conformaciones normales en animales de especies diferentes, incluso con fines estéticos. En Sheffield existe, y esta dibujada, la figura de una cabeza escultural con un doble rostro. Todo el trabajo de la Tesis se encamina, en definitiva, a explicar, con toda la claridad y extensión que me ha sido posible, en qué consiste ese doble rostro. ABSTRACT Peter and Alison Smithson’s work is, is from its start, very influenced by both Alison Margaret Gill and Peter Denham Smithson. The matter of study of this Thesis, the 1953 competition for the expansion of the University of Sheffield, estimated after its exam, which is composed by two different parts, which, together produce a strange effect as an image. Reyner Banham in 1955 described the image in his article “The New Brutalism” as the key argument (most iconic) for the Sheffield’s project. The way his image powerfully influences sensitivity, by perturbation, makes this a singular and memorable image. This feature, only present in Sheffield, over any other building of the time, even from the same architects, allow Banham to associate the project to Art Autre, thought by Michel Tapié as a new artistic movement, to which Sheffield will belong, in the architecture part. Tapié sees in the informalism of works considered Art Autre some aspects that can bring concepts he extracts from Riemann, XIX Century mathematician, father of the new geometry. This Thesis discovers Riemann’s concept of continuous variety, a set whose elements are able to go through variety by a continuous deformation, diluting themselves without touching each other. Examples of informalism would be, points of that variety, unstable forms or random detentions in the continuous transit of the same object. Therefore, the condition of memorability comes precisely from the impact that seeing bodies in state of evolution creates. That evolutive sense that can be associated to elements of a variety, comes together with a variety of states of evolution in the world of organic species. Not only as an individual, but as well as a species. Coincidence between Riemann and Darwin’s discoveries is not only formal, but as well temporary. Darwin observes that some individuals of concrete species present on their bodies some features, typical of other species, which may be interpreted as evolutive failure. But the most peculiar part of what Darwin exposes is that monstrosity can indeed be artificially made for aesthetical purposes, like it happens in certain animals and plants. Well, this is what the Thesis discovers in Sheffield’s project. The union in a single project of two different nature forms, of which none on the parts is a deformation of the other, but they are both irreducible. Once both parts are collated, a new system which adapts well is discovered. It is a system created by Leibniz in the XVII Century, created to distinguish to principles that clear the difference between the equation methods and differential calculus. This principles are the Principle of Position and the Principle of Continuity. This two principles, translated to the spatial analysis field are key for the two parts of the project. On the one hand, the part developing in a lineal axis belongs to the Principle of Position. This means that that there is a global vision of space after which it is decided which operation to follow, which in this case consists of establishing an axis between two singular positions of the university area. The part which is being deformed while it goes is studied as a continuous action of stretching an existing building, the Firth Court, in which there is no previous spatial analysis. The only way to understand and to explain this action is by the Principle of Continuity. So, all in all, the Thesis changes the view of Sheffield from an Art Autre work to a “monstrosity”, without the negative meaning of it, just as a combination of two different nature formations, which, at the same time, justifies its power as iconic image. Finally, I would like to point out that in the Sheffield’s project there is (drawn and also physically) a sculptural head which has the feature of representing both, a man and a woman’s face. All the work of this Thesis leads to explaining the double nature of the project, taking this double expression head as inspiration.