7 resultados para Left wing
em Universidad Politécnica de Madrid
Resumo:
Dentro del análisis y diseño estructural surgen frecuentemente problemas de ingeniería donde se requiere el análisis dinámico de grandes modelos de elementos finitos que llegan a millones de grados de libertad y emplean volúmenes de datos de gran tamaño. La complejidad y dimensión de los análisis se dispara cuando se requiere realizar análisis paramétricos. Este problema se ha abordado tradicionalmente desde diversas perspectivas: en primer lugar, aumentando la capacidad tanto de cálculo como de memoria de los sistemas informáticos empleados en los análisis. En segundo lugar, se pueden simplificar los análisis paramétricos reduciendo su número o detalle y por último se puede recurrir a métodos complementarios a los elementos .nitos para la reducción de sus variables y la simplificación de su ejecución manteniendo los resultados obtenidos próximos al comportamiento real de la estructura. Se propone el empleo de un método de reducción que encaja en la tercera de las opciones y consiste en un análisis simplificado que proporciona una solución para la respuesta dinámica de una estructura en el subespacio modal complejo empleando un volumen de datos muy reducido. De este modo se pueden realizar análisis paramétricos variando múltiples parámetros, para obtener una solución muy aproximada al objetivo buscado. Se propone no solo la variación de propiedades locales de masa, rigidez y amortiguamiento sino la adición de grados de libertad a la estructura original para el cálculo de la respuesta tanto permanente como transitoria. Adicionalmente, su facilidad de implementación permite un control exhaustivo sobre las variables del problema y la implementación de mejoras como diferentes formas de obtención de los autovalores o la eliminación de las limitaciones de amortiguamiento en la estructura original. El objetivo del método se puede considerar similar a los que se obtienen al aplicar el método de Guyan u otras técnicas de reducción de modelos empleados en dinámica estructural. Sin embargo, aunque el método permite ser empleado en conjunción con otros para obtener las ventajas de ambos, el presente procedimiento no realiza la condensación del sistema de ecuaciones, sino que emplea la información del sistema de ecuaciones completa estudiando tan solo la respuesta en las variables apropiadas de los puntos de interés para el analista. Dicho interés puede surgir de la necesidad de obtener la respuesta de las grandes estructuras en unos puntos determinados o de la necesidad de modificar la estructura en zonas determinadas para cambiar su comportamiento (respuesta en aceleraciones, velocidades o desplazamientos) ante cargas dinámicas. Por lo tanto, el procedimiento está particularmente indicado para la selección del valor óptimo de varios parámetros en grandes estructuras (del orden de cientos de miles de modos) como pueden ser la localización de elementos introducidos, rigideces, masas o valores de amortiguamientos viscosos en estudios previos en los que diversas soluciones son planteadas y optimizadas, y que en el caso de grandes estructuras, pueden conllevar un número de simulaciones extremadamente elevado para alcanzar la solución óptima. Tras plantear las herramientas necesarias y desarrollar el procedimiento, se propone un caso de estudio para su aplicación al modelo de elementos .nitos del UAV MILANO desarrollado por el Instituto Nacional de Técnica Aeroespacial. A dicha estructura se le imponen ciertos requisitos al incorporar un equipo en aceleraciones en punta de ala izquierda y desplazamientos en punta de ala derecha en presencia de la sustentación producida por una ráfaga continua de viento de forma sinusoidal. La modificación propuesta consiste en la adición de un equipo en la punta de ala izquierda, bien mediante un anclaje rígido, bien unido mediante un sistema de reducción de la respuesta dinámica con propiedades de masa, rigidez y amortiguamiento variables. El estudio de los resultados obtenidos permite determinar la optimización de los parámetros del sistema de atenuación por medio de múltiples análisis dinámicos de forma que se cumplan de la mejor forma posible los requisitos impuestos con la modificación. Se comparan los resultados con los obtenidos mediante el uso de un programa comercial de análisis por el método de los elementos .nitos lográndose soluciones muy aproximadas entre el modelo completo y el reducido. La influencia de diversos factores como son el amortiguamiento modal de la estructura original, el número de modos retenidos en la truncatura o la precisión proporcionada por el barrido en frecuencia se analiza en detalle para, por último, señalar la eficiencia en términos de tiempo y volumen de datos de computación que ofrece el método propuesto en comparación con otras aproximaciones. Por lo tanto, puede concluirse que el método propuesto se considera una opción útil y eficiente para el análisis paramétrico de modificaciones locales en grandes estructuras. ABSTRACT When developing structural design and analysis some projects require dynamic analysis of large finite element models with millions of degrees of freedom which use large size data .les. The analysis complexity and size grow if a parametric analysis is required. This problem has been approached traditionally in several ways: one way is increasing the power and the storage capacity of computer systems involved in the analysis. Other obvious way is reducing the total amount of analyses and their details. Finally, complementary methods to finite element analysis can also be employed in order to limit the number of variables and to reduce the execution time keeping the results as close as possible to the actual behaviour of the structure. Following this third option, we propose a model reduction method that is based in a simplified analysis that supplies a solution for the dynamic response of the structure in the complex modal space using few data. Thereby, parametric analysis can be done varying multiple parameters so as to obtain a solution which complies with the desired objetive. We propose not only mass, stiffness and damping variations, but also addition of degrees of freedom to the original structure in order to calculate the transient and steady-state response. Additionally, the simple implementation of the procedure allows an in-depth control of the problem variables. Furthermore, improvements such as different ways to obtain eigenvectors or to remove damping limitations of the original structure are also possible. The purpose of the procedure is similar to that of using the Guyan or similar model order reduction techniques. However, in our method we do not perform a true model order reduction in the traditional sense. Furthermore, additional gains, which we do not explore herein, can be obtained through the combination of this method with traditional model-order reduction procedures. In our procedure we use the information of the whole system of equations is used but only those nodes of interest to the analyst are processed. That interest comes from the need to obtain the response of the structure at specific locations or from the need to modify the structure at some suitable positions in order to change its behaviour (acceleration, velocity or displacement response) under dynamic loads. Therefore, the procedure is particularly suitable for parametric optimization in large structures with >100000 normal modes such as position of new elements, stiffness, mass and viscous dampings in previous studies where different solutions are devised and optimized, and in the case of large structures, can carry an extremely high number of simulations to get the optimum solution. After the introduction of the required tools and the development of the procedure, a study case is proposed with use the finite element model (FEM) of the MILANO UAV developed by Instituto Nacional de Técnica Aeroespacial. Due to an equipment addition, certain acceleration and displacement requirements on left wing tip and right wing tip, respectively, are imposed. The structure is under a continuous sinusoidal wind gust which produces lift. The proposed modification consists of the addition of an equipment in left wing tip clamped through a rigid attachment or through a dynamic response reduction system with variable properties of mass, stiffness and damping. The analysis of the obtained results allows us to determine the optimized parametric by means of multiple dynamic analyses in a way such that the imposed requirements have been accomplished in the best possible way. The results achieved are compared with results from a commercial finite element analysis software, showing a good correlation. Influence of several factors such as the modal damping of the original structure, the number of modes kept in the modal truncation or the precission given by the frequency sweep is analyzed. Finally, the efficiency of the proposed method is addressed in tems of computational time and data size compared with other approaches. From the analyses performed, we can conclude that the proposed method is a useful and efficient option to perform parametric analysis of possible local modifications in large structures.
Resumo:
This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.
Resumo:
The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration.
Resumo:
The left ventricular (LV) summit is the most common site of idiopathic epicardial LV arrhythmias and frequently represents a diagnostic and a therapeutic challenge.1 We present a case of sustained monomorphic ventricular tachycardia (SMVT) originating at the LV summit that underwent failed cryosurgical epicardial ablation and was successfully treated with the aid of merged hemodynamic and contrast-enhanced MRI (CE-MRI).
Resumo:
Blended-wing-body (BWB) aircraft are being studied with interest and effort to improve economic efficiency and to overcome operational and infrastructure related problems associated to the increasing size of conventional transport airplanes. The objective of the research reported here is to assess the aerodynamic feasibility and operational efficiency of a great size, blended wing body layout, a configuration which has many advantages. To this end, the conceptual aerodynamic design process of an 800 seat BWB has been done completed with a comparison of performance and operational issues with last generation of conventional very large aircraft. The results are greatly encouraging and predict about 20 percent increase in transport productivity efficiency, without the burden of new or aggravated safety or operational problems.
Resumo:
BASING their work on a linear theory, Evvard1 and Krasilshchikova2'3 independently developed an expression that yields the perturbation generated by a thiri lifting wing of arbitrary planform flying at supersonic speed on a point placed on the wing plane inside its planform,1 or both on and above the wing plane.2 This point must be influenced by two leading edges, one supersonic and the other partially subsonic. Although these authors followed different approaches, their methods concur in showing the existence of a perfectly defined cancellation zone. In this Note, the Evvard approach is generalized to the case solved by Krasilshchikova. Circumventing the latter's lengthy and somewhat complex approach, Evvard's simple method seems to be useful at least for educational purposes.
Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta
Resumo:
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with View the MathML source∼200ms−1. Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet (View the MathML source4.5–9×106kg of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain.