30 resultados para Learning Analysis
em Universidad Politécnica de Madrid
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.
Resumo:
El presente estudio analiza las intenciones de los usuarios acerca del uso de sistemas de tele-enseñanza LMS (Learning Management Systems, basándose en un modelo que integra el Modelo de Aceptación Tecnológica (TAM, Technology Acceptance Model, la Teoría del Comportamiento Percibido (TPB, Theory of Planned Behavior) y la Teoría Unificada de la Aceptación y Uso de la Tecnología (UTAUT, Unified Theory of Acceptance and Use of Technology), tomando la edad como variable moderadora. Así, este artículo estudia la influencia de la intención conductual, la actitud hacia el uso, la facilidad de uso percibida, la utilidad percibida, la norma subjetiva y la influencia social en la intención de utilizar sistemas e-learning LMS. Como antecedentes de estos factores de influencia se plantean las características del sistema y del usuario. El resultado de la revisión teórica es un modelo unificado que ha sido validado con datos recogidos de 94 estudiantes a través de un cuestionario en línea. Estos datos han sido analizados utilizando la técnica de mínimos cuadrados parciales, y los principales resultados confirman la relevancia predictiva del modelo para usuarios de entre 26 y 35 años y de entre 36 y 45 años.
Resumo:
There are significant levels of concern about the relevance and the difficulty of learning some issues on Strength of Materials and Structural Analysis. Most students of Continuum Mechanics and Structural Analysis in Civil Engineering usually point out some key learning aspects as especially difficult for acquiring specific skills. These key concepts entail comprehension difficulties but ease access and applicability to structural analysis in more advanced subjects. Likewise, some elusive but basic structural concepts, such as flexibility, stiffness or influence lines, are paramount for developing further skills required for advanced structural design: tall buildings, arch-type structures as well as bridges. As new curricular itineraries are currently being implemented, it appears appropriate to devise a repository of interactive web-based applications for training in those basic concepts. That will hopefully train the student to understand the complexity of such concepts, to develop intuitive knowledge on actual structural response and to improve their preparation for exams. In this work, a web-based learning assistant system for influence lines on continuous beams is presented. It consists of a collection of interactive user-friendly applications accessible via Web. It is performed in both Spanish and English languages. Rather than a “black box” system, the procedure involves open interaction with the student, who can simulate and virtually envisage the structural response. Thus, the student is enabled to set the geometric, topologic and mechanic layout of a continuous beam and to change or shift the loading and the support conditions. Simultaneously, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. The system is performed through a set of web pages which encompasses interactive exercises and problems, written in JavaScript under JQuery and DyGraphs frameworks, given that their efficiency and graphic capabilities are renowned. Students can freely boost their self-study on this subject in order to face their exams more confidently. Besides, this collection is expected to be added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)
Resumo:
This paper presents a project for providing the students of Structural Engineering with the flexibility to learn outside classroom schedules. The goal is a framework for adaptive E-learning based on a repository of open educational courseware with a set of basic Structural Engineering concepts and fundamentals. These are paramount for students to expand their technical knowledge and skills in structural analysis and design of tall buildings, arch-type structures as well as bridges. Thus, concepts related to structural behaviour such as linearity, compatibility, stiffness and influence lines have traditionally been elusive for students. The objective is to facilitate the student a teachinglearning process to acquire the necessary intuitive knowledge, cognitive skills and the basis for further technological modules and professional development in this area. As a side effect, the system is expected to help the students improve their preparation for exams on the subject. In this project, a web-based open-source system for studying influence lines on continuous beams is presented. It encompasses a collection of interactive user-friendly applications accessible via Web, written in JavaScript under JQuery and Dygraph Libraries, taking advantage of their efficiency and graphic capabilities. It is performed in both Spanish and English languages. The student is enabled to set the geometric, topologic, boundary and mechanic layout of a continuous beam. While changing the loading and the support conditions, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. This open interaction with the user allows the student to simulate and virtually infer the structural response. Different levels of complexity can be handled, whereas an ongoing help is at hand for any of them. Students can freely boost their experiential learning on this subject at their own pace, in order to further share, process, generalize and apply the relevant essential concepts of Structural Engineering analysis. Besides, this collection is being added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)
Resumo:
The acquisition of technical, contextual and behavioral competences is a prerequisite for sustainable development and strengthening of rural communities. Territorial display of the status of these skills helps to design the necessary learning, so its inclusion in planning processes is useful for decision making. The article discusses the application of visual representation of competences in a rural development project with Aymara women communities in Peru. The results show an improvement of transparency and dialogue, resulting in a more successful project management and strengthening of social organization.
Resumo:
The aim of this paper is to contribute to the understanding of the underlying factors in the process of transferring technology from university to industry. Findings point to strategic importance of critical factors as the definition of common objectives, cooperation, motivation, and the elimination of technical and legal barriers. These challenges must have implications in the incorporation of cooperative aspects of research projects in the design of public innovation policies.
Resumo:
decade has raised the interest among the research community on the acceptance and use of these systems by both teachers and students. At first, the implementation of LMS was based on their technical design and the adaptation of the learning processes to the virtual environment, neglecting students’ characteristics when the systems were deployed, which led to expensive and failing implementations. The Unified Theory of Acceptance and Use of Technology (UTAUT) proposes a framework which allows the study of the acceptance and use of technology that takes into consideration the students’ characteristics and how they affect the acceptance and the degree of use of educational technology. This study questions the role of the user’s attitude towards use of LMS and uses the UTAUT to examine the moderating effect of technological culture in the adoption of LMS in Spain. The results from the comparison and analysis of three different models confirm the relevance of attitude towards use as an antecedent of intention to use the system, as well as the important moderating effect of gender and technological culture. The discussion of results suggests the need for a more in-depth analysis and interrelations of cultural dimensions in the adoption of educational technologies and learning management systems
Resumo:
In this paper, the presynaptic rule, a classical rule for hebbian learning, is revisited. It is shown that the presynaptic rule exhibits relevant synaptic properties like synaptic directionality, and LTP metaplasticity (long-term potentiation threshold metaplasticity). With slight modifications, the presynaptic model also exhibits metaplasticity of the long-term depression threshold, being also consistent with Artola, Brocher and Singer’s (ABS) influential model. Two asymptotically equivalent versions of the presynaptic rule were adopted for this analysis: the first one uses an incremental equation while the second, conditional probabilities. Despite their simplicity, both types of presynaptic rules exhibit sophisticated biological properties, specially the probabilistic version
Resumo:
In this paper, the results of six years of research in engineering education, in the application of the European Higher Education Area (EHEA) to improve the performance of the students in the subject Analysis of Circuits of Telecommunication Engineering, are analysed taking into consideration the fact that there would be hidden variables that both separate students into subgroups and show the connection among several basic subjects such as Analysis of Circuits (AC) and Mathematics (Math). The discovery of these variables would help us to explain the characteristics of the students through the teaching and learning methodology, and would show that there are some characteristics that instructors do not take into account but that are of paramount importance
Resumo:
This paper presents some results of a R+D project entitled “e-Learning system for Practical Training of University students in Education Faculties (ForELearn)”, developed in Spain by the Universidad de Granada and the Universidad Politécnica de Madrid and funded by the Spanish Ministry of Education. In a first phase, through the use of AulaWeb Learning Management System, a set of adaptations and improvements of this software application have been done for the design and development of an experimental course of Practicum supervision. Next, the implementation of this course by means of a group of face to face and online seminars provides experimental data for the analysis and discussion about the point of view of users (preservice teachers) that have tracked their practice supervision with AulaWeb.
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
Purpose: Surgical simulators are currently essential within any laparoscopic training program because they provide a low-stakes, reproducible and reliable environment to acquire basic skills. The purpose of this study is to determine the training learning curve based on different metrics corresponding to five tasks included in SINERGIA laparoscopic virtual reality simulator. Methods: Thirty medical students without surgical experience participated in the study. Five tasks of SINERGIA were included: Coordination, Navigation, Navigation and touch, Accurate grasping and Coordinated pulling. Each participant was trained in SINERGIA. This training consisted of eight sessions (R1–R8) of the five mentioned tasks and was carried out in two consecutive days with four sessions per day. A statistical analysis was made, and the results of R1, R4 and R8 were pair-wise compared with Wilcoxon signed-rank test. Significance is considered at P value <0.005. Results: In total, 84.38% of the metrics provided by SINERGIA and included in this study show significant differences when comparing R1 and R8. Metrics are mostly improved in the first session of training (75.00% when R1 and R4 are compared vs. 37.50% when R4 and R8 are compared). In tasks Coordination and Navigation and touch, all metrics are improved. On the other hand, Navigation just improves 60% of the analyzed metrics. Most learning curves show an improvement with better results in the fulfillment of the different tasks. Conclusions: Learning curves of metrics that assess the basic psychomotor laparoscopic skills acquired in SINERGIA virtual reality simulator show a faster learning rate during the first part of the training. Nevertheless, eight repetitions of the tasks are not enough to acquire all psychomotor skills that can be trained in SINERGIA. Therefore, and based on these results together with previous works, SINERGIA could be used as training tool with a properly designed training program.
Resumo:
This paper presents an analysis of different models used to assess the quality of formative actions, considering classroom learning and distance education courses. Taking as starting point one of the analyzed models, the paper sets out the necessity of developing a new model that could measure the quality of a blended formation process, by selecting the applicable indicators and proposing some new. The model is composed of seven different categories, which include a sum of thirty five indicators. They will be used to represent courses quality level in Kiviat?s diagrams. This model is currently being put into practice in a real university environment.
Resumo:
Analysis of learning data (learning analytics) is a new research field with high growth potential. The main objective of Learning analytics is the analysis of data (interactions being the basic data unit) generated in virtual learning environments, in order to maximize the outcomes of the learning process; however, a consensus has not been reached yet on which interactions must be measured and what is their influence on learning outcomes. This research is grounded on the study of e-learning interaction typologies and their relationship with students? academic performance, by means of a comparative study between different interaction typologies (based on the agents involved, frequency of use and participation mode). The main conclusions are a) that classifications based on agents offer a better explanation of academic performance; and b) that each of the three typologies are able to explain academic performance in terms of some of their components (student-teacher and student-student interactions, evaluating students interactions and active interactions, respectively), with the other components being nonrelevant.