4 resultados para Leaching risk

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrate leaching (NL) is an important N loss process in irrigated agriculture that imposes a cost on the farmer and the environment. A meta-analysis of published experimental results from agricultural irrigated systems was conducted to identify those strategies that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended fertilizer rate. Replacing a fallow with a non-legume cover crop reduced NL by 50% while using a legume did not have any effect on NL. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.