4 resultados para Laser photons

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a new medical technology, used to characterise the optical properties of tissues, and to locate affected areas like tumours. Among its advantages compared to more traditional spectroscopic techniques, there is the feasibility to asses simultaneously and independently two optical parameters: the absorption of the light inside the irradiated body, and the scattering of the photons across the tissues, at each wavelength, generating two coefficients (µa, absorption coeff.; and µ's, transport scattering coeff.). If it is assumed that they are related respectively to chemical components and to physical properties of the sample, TDRS can be applied to the quantification of chemicals and the measurement of the rheological properties (i.e. mealiness estimation) at the same time. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM) process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.