22 resultados para Laser intensity

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor  , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peak temperature in the corona of plasma ejected by a laser-irradiated slab is discussed in terms of a one-electron-temperature model. Both heat-flux saturation and pulse rise-time effects are considered;the intensity in the rising half of the pulse is approximated by a linear function of time, I(t) = Iot/r. The temperature is found to be proportional to (IQX2)273 and a function of I0X4/r. Above a certain value of I0X4/T, the plasma presents two characteristic temperatures (at saturation and at the critical surface) which can be identified with experimentally observed cold- and hot-electron temperatures. The results are compared with extensive experimental data available for both nd and CO2 lasers, I0(W'cnf2) X2 (/um) starting around 1012. The agreement is good if substantial flux inhibition is assumed (flux-limit factor f = 0.03), and fails for I0X2 above 1O1S. Results for both ablation pressure and mass ablation rate are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NB of laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target. This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser MegaJoule (LMJ) are described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Direct-drive inertial confinement thermonuclear fusion consists in illuminating a shell of cryogenic Deuterium and Tritium (DT) mixture with many intense beams of laser light. Capsule is composed of DT gassurrounded by cryogenic DT as combustible fuel. Basic rules are used to define shell geometry from aspect ratio, fuel mass and layers densities. We define baseline designs using two aspect ratio (A=3 and A=5) who complete HiPER baseline design (A=7.7). Aspect ratio is defined as the ratio of ice DT shell inner radius over DT shell thickness. Low aspect ratio improves hydrodynamics stabilities of imploding shell. Laser impulsion shape and ablator thickness are initially defined by using Lindl (1995) pressure ablation and mass ablation formulae for direct-drive using CH layer as ablator. In flight adiabat parameter is close to one during implosion. Velocitie simplosions chosen are between 260 km/s and 365 km/s. More than thousand calculations are realized for each aspect ratio in order to optimize the laser pulse shape. Calculations are performed using the one-dimensional version of the Lagrangian radiation hydrodynamics FCI2. We choose implosion velocities for each initial aspect ratio, and we compute scaled-target family curves for each one to find self-ignition threshold. Then, we pick points on each curves that potentially product high thermonuclear gain and compute shock ignition in the context of Laser MegaJoule. This systematic analyze reveals many working points which complete previous studies ´allowing to highlight baseline designs, according to laser intensity and energy, combustible mass and initial aspect ratio to be relevant for Laser MegaJoule.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present an educational software addressed to the students of optical communication courses, for a simple visualization of the basic dynamic processes of semiconductor lasers. The graphic interface allows the user to choose the laser and the modulation parameters and it plots the laser power output and instantaneous frequency versus time. Additionally, the optical frequency variations are numerically shifted into the audible frequency range in order to produce a sound wave from the computer loudspeakers. Using the proposed software, the student can simultaneously see and hear how the laser intensity and frequency change, depending on the modulation and device parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transition that the expansion flow of laser-produced plasmas experiences when one moves from long, low intensity pulses (temperature vanishing at the isentropic plasma-vacuum front,lying at finite distance) to short, intense ones (non-zero, uniform temperature at the plasma-vacuum front, lying at infinity) is studied. For plznar geometry and lqge ion number Z, the transition occurs for dq5/dt=0.14(27/8)k712Z’1zn$/m4f, 12nK,,; mi, and K are laser intensity, critical density,ion mass, and Spitzer’s heat conduction coefficient. This result remains valid for finite Zit,h ough the numerical factor in d$/dt is different. Shorter wavelength lasers and higher 4 plasmas allow faster rising pulses below transition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-power high-efficiency laser power transmission system at 100m based on an optimized multi-cell GaAs converter capable of supplying 9.7W of electricity is demonstrated. An I-V testing system integrated with a data acquisition circuit and an analysis software is designed to measure the efficiency and the I-V characteristics of the laser power converter (LPC). The dependencies of the converter’s efficiency with respect to wavelength, laser intensity and temperature are analyzed. A diode laser with 793nm of wavelength and 24W of power is used to test the LPC and the software. The maximum efficiency of the LPC is 48.4% at an input laser power of 8W at room temperature. When the input laser power is 24W (laser intensity of 60000W/m2), the efficiency is 40.4% and the output voltage is 4 V. The overall efficiency from electricity to electricity is 11.6%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser?capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High Intensity Lasers Application to Advanced Materials Processing: Laser Peening and Related

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a review of direct-drive shock ignition studies done as alternative for the Laser Mega-Joule to achieve high thermonuclear gain. One-dimensional analysis of HiPER-like Shock-ignited target designs is presented. It is shown that high gain can be achieved with shock ignition for designs which do not ignite only from the laser compression. Shock ignition is achieved for different targets of the fast ignition family which are driven by an absorbed energy between 100 kJ and 850kJ and deliver thermonuclear energies between 10-130 MJ. Shock-Ignition of Direct-Drive Double-Shell non-cryogenic target is also addressed. 2D results concerning the LMJ irradiation geometry are presented. Few systematic analyses are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the ignitor spike uniformity. Solutions for fuel assembly and shock ignition on LMJ using 2D calculations are presented. It is shown that high-gain shock-ignition is possible with intensity of each quad less than 1e15 W/cm2but low modes asymmetries displace the ignitor power in the spike towards higher powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Shock Processing is developing as a key technology for the improvement of surface mechanical and corrosion resistance properties of metals due to its ability to introduce intense compressive residual stresses fields into high elastic limit materials by means of an intense laser driven shock wave generated by laser with intensities exceeding the 109 W/cm2 threshold, pulse energies in the range of 1 Joule and interaction times in the range of several ns. However, because of the relatively difficult-to-describe physics of shock wave formation in plasma following laser-matter interaction in solid state, only limited knowledge is available in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, an account of the physical issues dominating the development of LSP processes from a moderately high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and new experimental contrast results obtained at laboratory scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse bremsstrahlung has been incorporated into an analytical model of the expanding corona of a laser-irradiated spherical target. Absorption decreases slowly with increasing intensity, in agreement with some numerical simulations, and contrary to estimates from simple models in use up to now, which are optimistic at low values of intensity and very pessimistic at high values. Present results agree well with experimental data from many laboratories; substantial absorption is found up to moderate intensities,say below IOl5 W cm-2 for 1.06 pm light. Anomalous absorption, wher, included in the analysis, leaves practically unaffected the ablation pressure and mass ablation rate, for given absorbed intensity. Universal results are given in dimensionless fom.