25 resultados para Laser Produced Plasma
em Universidad Politécnica de Madrid
Resumo:
The transition that the expansion flow of laser-produced plasmas experiences when one moves from long, low intensity pulses (temperature vanishing at the isentropic plasma-vacuum front,lying at finite distance) to short, intense ones (non-zero, uniform temperature at the plasma-vacuum front, lying at infinity) is studied. For plznar geometry and lqge ion number Z, the transition occurs for dq5/dt=0.14(27/8)k712Z’1zn$/m4f, 12nK,,; mi, and K are laser intensity, critical density,ion mass, and Spitzer’s heat conduction coefficient. This result remains valid for finite Zit,h ough the numerical factor in d$/dt is different. Shorter wavelength lasers and higher 4 plasmas allow faster rising pulses below transition.
Resumo:
In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.
Resumo:
The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.
Resumo:
We present improved experimental transition probabilities for the optical Ca I 4s4p-4s4d and 4s4p-4p2multiplets. The values were determined with an absolute uncertainty of 10%. Transition probabilities have been determined by the branching ratios from the measurement of relative line intensities emitted by laser-induced plasma (LIP). The line intensities were obtained with the target (leadcalcium) placed in argon atmosphere at 6 Torr, recorded at a 2.5 µs delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 350.0 and 550.0 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma is characterized by electron temperature (T) of 11400 K and an electron number density (Ne) of 1.1 x 1016 cm-3. The influence self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values in the literature. The method for measurement of transition probabilities using laser-induced plasma as spectroscopic source has been checked.
Resumo:
A previous hydrodynamic model of the expansion of a laser-produced plasma, using classical (Spitzer) heat flux, is reconsidered with a nonlocal heat flux model. The nonlocal law is shown to be valid beyond the range of validity of the classical law, breaking down ultimately, however, in agreement with recent predictions.
Resumo:
The Stark full widths at half of the maximal line intensity (FWHM, ω) have been measured for 25 spectrallines of PbIII (15 measured for the first time) arising from the 5d106s8s, 5d106s7p, 5d106s5f and 5d106s5g electronic configurations, in a lead plasma produced by ablation with a Nd:YAG laser. The optical emission spectroscopy from a laser-induced plasma generated by a 10 640 Å radiation, with an irradiance of 2 × 1010 W cm− 2 on a lead target (99.99% purity) in an atmosphere of argon was analysed in the wavelength interval between 2000 and 7000 Å. The broadening parameters were obtained with the target placed in argon atmosphere at 6 Torr and 400 ns after each laser light pulse, which provides appropriate measurement conditions. A Boltzmann plot was used to obtain the plasma temperature (21,400 K) and published values of the Starkwidths in Pb I, Pb II and PbIII to obtain the electron number density (7 × 1016 cm− 3); with these values, the plasma composition was determined by means of the Saha equation. Local Thermodynamic Equilibrium (LTE) conditions and plasma homogeneity has been checked. Special attention was dedicated to the possible self-absorption of the different transitions. Comparison of the new results with recent available data is also presented.
Resumo:
Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.
Resumo:
The Atomic Physics Group at the Institute of Nuclear Fusion (DENIM) in Spain has accumulated experience over the years in developing a collection of computational models and tools for determining some relevant microscopic properties of, mainly, ICF and laser-produced plasmas in a variety of conditions. In this work several applications of those models in determining some relevant microscopic properties are presented.
Resumo:
An analytical study of the relativistic interaction of a linearly-polarized laser-field of w frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2w electron bunches), as well as the mean electron energy.
Resumo:
In this work we have realized plasma diagnosis produced by Laser (LPP), by means of emission spectroscopy in a Laser Shock Processing (LSP). The LSP has been proposed as an alternative technology, competitive with classical surface treatments. The ionic species present in the plasma together with electron density and its temperature provide significant indicators of the degree of surface effect of the treated material. In order to analyze these indicators, we have realized spectroscopic studies of optical emission in the laser-generated plasmas in different situations. We have worked focusing on an aluminum sample (Al2024) in air and/or in LSP conditions (water flow) a Q-switched laser of Nd:YAG (λ = 1.06 μm, 10 ns of pulse duration, running at 10 Hz repetition rate). The pulse energy was set at 2,5 J per pulse. The electron density has been measured using, in every case, the Stark broadening of H Balmer α line (656.27 nm). In the case of the air, this measure has been contrasted with the value obtained with the line of 281.62 nm of Al II. Special attention has been paid to the self-absorption of the spectral lines used. The measures were realized with different delay times after the pulse of the laser (1–8 μs) and with a time window of 1 μs. In LSP the electron density obtained was between 1017 cm−3 for the shortest delays (4–6 μs), and 1016 cm−3 for the greatest delays (7,8 μs).
Resumo:
The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, in a certain plane, of a linear pulse of energy per unit time and area
Resumo:
The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation
Resumo:
The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation
plasma, from a much thinner isothermal flow expanding into the vacuum. For lplasma, and a very thin transition layer bounding an expansion flow, much larger in extent than the compression region. In both regimes, the critical plane lies far in the expansion tail. The results break down when the density is so small that the plasma becomes collisionless. The analysis is also invalid for a too small. Using results previously found for a>€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.
Resumo:
A quasisteady model for the plasma ablated from a thick foil by a laser pulse, at low $lln $ and R /A i within a low, narrow range, is given (4, is absorbed intensity, /zL wavelength, R focalspot radius). An approximate analytical solution is given for the two-dimensional plasma dynamics. At large magnetic Reynolds number Rm, the morphology of the magnetic field shows features in agreement with recent results for high intensities. Current lines are open: electric current flows toward the spot near its axis, then turns and flows away. The efficiency of converting light energy into electric energy peaks at Rm- 1, both the validity of the model. and accuracy of the solution are discussed, The neighborhood of the spot boundary is analyzed in detail by extending classical Prandtl-Meyer results.