6 resultados para Language acquisition.
em Universidad Politécnica de Madrid
Resumo:
This article explores one aspect of the processing perspective in L2 learning in an EST context: the processing of new content words, in English, of the type ‘cognates’ and ‘false friends’, by Spanish speaking engineering students. The paper does not try to offer a comprehensive overview of language acquisition mechanisms, but rather it is intended to review more narrowly how our conceptual systems, governed by intricately linked networks of neural connections in the brain, make language development possible, creating, at the same time, some L2 processing problems. The case of ‘cognates and false friends’ in specialised contexts is brought here to illustrate some of the processing problems that the L2 learner has to confront, and how mappings in the visual, phonological and semantic (conceptual) brain structures function in second language processing of new vocabulary. Resumen Este artículo pretende reflexionar sobre un aspecto de la perspectiva del procesamiento de segundas lenguas (L2) en el contexto del ICT: el procesamiento de palabras nuevas, en inglés, conocidas como “cognados” y “falsos amigos”, por parte de estudiantes de ingeniería españoles. No se pretende ofrecer una visión completa de los mecanismos de adquisición del lenguaje, más bien se intenta mostrar cómo nuestro sistema conceptual, gobernado por una complicada red de conexiones neuronales en el cerebro, hace posible el desarrollo del lenguaje, aunque ello conlleve ciertas dificultades en el procesamiento de segundas lenguas. El caso de los “cognados” y los “falsos amigos”, en los lenguajes de especialidad, se trae para ilustrar algunos de los problemas de procesamiento que el estudiante de una lengua extranjera tiene que afrontar y el funcionamiento de las correspondencias entre las estructuras visuales, fonológicas y semánticas (conceptuales) del cerebro en el procesamiento de nuevo vocabulario.
Resumo:
Background: Early and effective identification of developmental disorders during childhood remains a critical task for the international community. The second highest prevalence of common developmental disorders in children are language delays, which are frequently the first symptoms of a possible disorder. Objective: This paper evaluates a Web-based Clinical Decision Support System (CDSS) whose aim is to enhance the screening of language disorders at a nursery school. The common lack of early diagnosis of language disorders led us to deploy an easy-to-use CDSS in order to evaluate its accuracy in early detection of language pathologies. This CDSS can be used by pediatricians to support the screening of language disorders in primary care. Methods: This paper details the evaluation results of the ?Gades? CDSS at a nursery school with 146 children, 12 educators, and 1 language therapist. The methodology embraces two consecutive phases. The first stage involves the observation of each child?s language abilities, carried out by the educators, to facilitate the evaluation of language acquisition level performed by a language therapist. Next, the same language therapist evaluates the reliability of the observed results. Results: The Gades CDSS was integrated to provide the language therapist with the required clinical information. The validation process showed a global 83.6% (122/146) success rate in language evaluation and a 7% (7/94) rate of non-accepted system decisions within the range of children from 0 to 3 years old. The system helped language therapists to identify new children with potential disorders who required further evaluation. This process will revalidate the CDSS output and allow the enhancement of early detection of language disorders in children. The system does need minor refinement, since the therapists disagreed with some questions from the CDSS knowledge base (KB) and suggested adding a few questions about speech production and pragmatic abilities. The refinement of the KB will address these issues and include the requested improvements, with the support of the experts who took part in the original KB development. Conclusions: This research demonstrated the benefit of a Web-based CDSS to monitor children?s neurodevelopment via the early detection of language delays at a nursery school. Current next steps focus on the design of a model that includes pseudo auto-learning capacity, supervised by experts.
Resumo:
According to the World Health Organization in recent years (2009-2010) was increased the number of infants who received neonatal care of various kinds. Neonatal recovery newborn further manifested in various embodiments, neurological and somatic problems. Young parents with a child with disabilities infants (HIA) pay more attention to their health and lesser to extent speech and mental development of the baby. Early detection of deficiencies in language acquisition, timely remedial and preventive effects in the most sensitive periods of its development significantly increase the efficiency of full or partial compensation of different options of development. Therefore, the present trend in modern domestic and outdoor speech therapy is of particular relevance.
Resumo:
Este Proyecto Fin de Grado trabaja en pos de la mejora y ampliación de los sistemas Pegaso y Gades, dos Sistemas Expertos enmarcados en el ámbito de la e-Salud. Estos sistemas, que ya estaban en funcionamiento antes del comienzo de este trabajo, apoyan la toma de decisiones en Atención Primaria. Esto es, permiten evaluar el nivel de adquisición del lenguaje en niños de 0 a 6 años a través de sus respectivas aplicaciones web. Además, permiten almacenar dichas evaluaciones y consultarlas posteriormente, junto con las decisiones del sistema asociadas a las mismas. Pegaso y Gades siguen una arquitectura de tres capas y están desarrollados usando fundamentalmente componentes Java y siguiendo. Como parte de este trabajo, en primer lugar se solucionan algunos problemas en el comportamiento de ambos sistemas, como su incompatibilidad con Java SE 7. A continuación, se desarrolla una aplicación que permite generar una ontología en lenguaje OWL desde código Java. Para ello, se estudia primero el concepto de ontología, el lenguaje OWL y las diferentes librerías Java existentes para generar ontologías OWL. Por otra parte, se mejoran algunas de las funcionalidades de los sistemas de partida y se desarrolla una nueva funcionalidad para la explotación de los datos almacenados en las bases de datos de ambos sistemas Esta nueva funcionalidad consiste en un módulo responsable de la generación de estadísticas a partir de los datos de las evaluaciones del lenguaje que hayan sido realizadas y, por tanto, almacenadas en las bases de datos. Estas estadísticas, que pueden ser consultadas por todos los usuarios de Pegaso y Gades, permiten establecer correlaciones entre los diversos conjuntos de datos de las evaluaciones del lenguaje. Por último, las estadísticas son mostradas por pantalla en forma de varios tipos de gráficas y tablas, de modo que los usuarios expertos puedan analizar la información contenida en ellas. ABSTRACT. This Bachelor's Thesis works towards improving and expanding the systems Pegaso and Gades, which are two Expert Systems that belong to the e-Health field. These systems, which were already operational before starting this work, support the decision-making process in Primary Care. That is, they allow to evaluate the language acquisition level in children from 0 to 6 years old. They also allow to store these evaluations and consult them afterwards, together with the decisions associated to each of them. Pegaso and Gades follow a three-tier architecture and are developed using mainly Java components. As part of this work, some of the behavioural problems of both systems are fixed, such as their incompatibility with Java SE 7. Next, an application that allows to generate an OWL ontology from Java code is developed. In order to do that, the concept of ontology, the OWL language and the different existing Java libraries to generate OWL ontologies are studied. On the other hand, some of the functionalities of the initial systems are improved and a new functionality to utilise the data stored in the databases of both systems is developed. This new functionality consists of a module responsible for the generation of statistics from the data of the language evaluations that have been performed and, thus, stored in the databases. These statistics, which can be consulted by all users of Pegaso and Gades, allow to establish correlations between the diverse set of data from the language evaluations. Finally, the statistics are presented to the user on the screen in the shape of various types of charts and tables, so that the expert users can analyse the information contained in them.
Resumo:
An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.
Resumo:
An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.