3 resultados para Landscape Interactions

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N2 fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decades, online learning has transformed the educational landscape with the emergence of new ways to learn. This fact, together with recent changes in educational policy in Europe aiming to facilitate the incorporation of graduate students to the labor market, has provoked a shift on the delivery of instruction and on the role played by teachers and students, stressing the need for development of both basic and cross-curricular competencies. In parallel, the last years have witnessed the emergence of new educational disciplines that can take advantage of the information retrieved by technology-based online education in order to improve instruction, such as learning analytics. This study explores the applicability of learning analytics for prediction of development of two cross-curricular competencies – teamwork and commitment – based on the analysis of Moodle interaction data logs in a Master’s Degree program at Universidad a Distancia de Madrid (UDIMA) where the students were education professionals. The results from the study question the suitability of a general interaction-based approach and show no relation between online activity indicators and teamwork and commitment acquisition. The discussion of results includes multiple recommendations for further research on this topic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.