12 resultados para Landsat ETM

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to analyze the usefulness of traditional indexes, such as NDVI and NDWI along with a recently proposed index (NDDI) using merged data for multiple dates, with the aim of obtaining drought data to facilitate the analysis for government premises. In this study we have used Landsat 7 ETM+ data for the month of June (2001-2009), which merged to get bands with twice the resolution. The three previous indices were calculated from these new bands, getting in turn drought maps that can enhance the effectiveness of decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo del presente Proyecto Fin de Carrera es la elaboración de cartografía base de la zona del Valle de Tamanart y la elaboración de un documento cartográfico que muestre la distribución de minerales en ella. Se pretende poder facilitar el reconocimiento del área arqueológica de estudio desde la perspectiva del análisis físico para correlacionar el material de superficie con la aparición de petroglifos o restos arqueológicos. En la investigación arqueológica de países emergentes es difícil contar con cartografía previa de la zona de interés en la realización de las campañas de campo. Se pretende plantear una metodología general de creación de cartografía básica y cartografía temática de distribución de minerales en superficie mediante técnicas de teledetección utilizando imágenes de satélite que sean gratuitas a través de la red. El proyecto consta de dos partes: 1. Confección de la cartografía base: - Primero: se realiza una breve descripción documentada de los aspectos físicos globales (geomorfológicos, geológicos, hidrológicosâ¦) del área de estudio, a través de los documentos que puedan existir en Internet con acceso libre y con la información aportada por el grupo de investigación. - Segundo: Para poder obtener la base cartográfica se realiza el tratamiento de datos de las escenas de los satélites. Las escenas gratuitas disponibles han sido dos imágenes de la misma zona, una del satélite Landsat7 y otra del satélite Landsat5, descargadas del servidor GLOVIS (USGS Global Visualization Viewer). Confección de la cartografía temática: - Selección de la zona de estudio en las imágenes de teledetección ya tratadas en la primera parte del proyecto. - Clasificación de la imagen para usos de suelo. - Edición de la cartografía temática. El resultado del proyecto son la cartografía base y de coberturas superficiales de distribución de minerales sobre la que se ubican los yacimientos arqueológicos de la zona, yacimientos y paneles que fueron georreferenciados en la campaña de campo 2013. El PFC se realiza en colaboración con el Departamento de Prehistoria de la UNED, responsables de la investigación arqueológica en la zona de estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Junto con el incremento de la resolución espacial, el desarrollo de las técnicas de interpretación multiespectrales e hiperespectrales es otro de los campos de investigación actual en teledetección. Es de suponer que una de las vías naturales de evolución de las plataformas espaciales será sin duda la incorporación de sensores de mayor resolución espectral. A partir de ahí se comenzará a sustituir el tradicional análisis multiespectral,basado en los datos de a lo sumo cinco o seis bandas, por el hiperespectral, que habrá de manejar datos de varios centenares de bandas simultáneamente. Ya existen satélites con sensores hiperespectrales en órbita, como Hyperion, montado sobre el satélite EO-1, el cual estudiamos en este proyecto. La detección de cambios, surge ante la necesidad de actualizar la cartografía de forma periódica. La evaluación de cambios producidos en el terreno se realiza manualmente y requiere de la supervisión por parte de un operador experto. Esto implica una importante inversión en tiempo, con su consecuente coste económico. Las imágenes satélite constituyen una valiosa fuente para estudiar los cambios que se producen en la superficie terrestre. En un ciclo productivo basado en imágenes numéricas, es de esperar que se ahorre una importante cantidad de trabajo introduciendo procedimientos de detección de cambios que se puedan implementar en procesos de carácter automático. Desde hace unas décadas, se están utilizando como fuentes de datos para diversos usos en detección de cambios, los sensores transportados en plataformas aeroespaciales. En resumen, el objetivo de éste proyecto es analizar los métodos de análisis multitemporal aplicados a imágenes de satélite, para lo cual se hará un estudio comparativo de las características de las imágenes proporcionadas por las plataformas Landsat y EO-1.Como resultado de ello, se obtendrá documentación cartográfica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el presente proyecto se ha pretendido realizar una clasificación de los distintos usos del suelo en la provincia de Toledo y de forma más precisa en el municipio de Talavera de la Reina. Se ha profundizado en los conocimientos sobre teledetección adquiridos durante los años de estudio de la titulación de Ingeniero Técnico en Topografía, cubriendo las aplicaciones más importantes. Para ello, en primer lugar se debe recopilar la información, en este caso se han utilizado dos imágenes Landsat 8 - OLI (19/4/2013 - 9/8/2013) y con el software adecuado se realiza la clasificación dividiendo el suelo en los usos más frecuentes de dicha zona. El resultado obtenido nos muestra los distintos usos del suelo en el año de estudio, 2013, y exponer el potencial de las técnicas de teledetección, para así poder interpretar y llegar a conocer temas de gran relevancia como el aprovechamiento del terreno o el desarrollo del sector agrícola en la zona. El procedimiento consta de la elaboración de los correspondientes documentos cartográficos de usos del suelo y vegetación para el año 2013 a partir de las imágenes de satélite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto tiene como objetivo ampliar, mediante la caracterización espectral y multitemporal por técnicas de teledetección y medidas in situ, el estudio del corredor fluvial para el río Tinguiririca en Chile. Consiste en estudiar la cobertura del terreno, evaluar su dinámica de cambio e identificar zonas de acumulación de materiales de alteración hidrotermal arcillosos y óxidos de hierro, presentes en la cuenca durante las últimas tres décadas que puedan explicar su evolución temporal. Se pretenden obtener nuevas variables geoespaciales que ayuden a comprender las posibles causas de variación del cauce, elaborando cartografía para una posterior fase de investigación mediante modelización hidráulica que vaya dirigida a paliar el impacto de las riadas periódicas. Para ello, se han empleado, tratado y explotado imágenes de los sensores remotos TM, ETM+, OLI y TIRS tomadas en un período comprendido entre 1993 y 2014, que se han contrastado con perfiles batimétricos, datos GPS, supervisión y muestreo tomados sobre el terreno. Se ha realizado así mismo, un estudio prospectivo de caso sobre cómo afectarían las variables obtenidas por teledetección a la modelización hidráulica, en particular, la rugosidad, proponiendo un marco metodológico global de integración de las tres técnicas: sistemas de información geográfica, teledetección y modelización hidráulica. ABSTRACT This project aims to develop the study of Tinguiririca River corridor in Chile, through spectral characterization and multitemporal remote sensing and other measurements. This involves studying the land cover, its dynamic changes and identifies clayey materials and iron oxides accumulations of hydrothermal alteration, present in the basin during the last three decades to explain their evolution. It aims to obtain new geospatial variables in order to understand the possible causes of channel variation, developing mapping to a later research stage using hydraulic modeling so as to mitigate the impact of periodic floods. In this way, it has used processed and exploited images of TM, ETM +, OLI and TIRS remote sensing, taken in a period between 1993 and 2014 which it has been compared with bathymetric profiles, GPS, monitoring and sampling data collected in the field . It has done a prospective study about the variables obtained condition on hydraulic modeling, roughness in particular, proposing IX a complete methodological framework about the integration of the three techniques: geographic information systems, remote sensing and modeling hydraulics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La observación de la Tierra es una herramienta de gran utilidad en la actualidad para el estudio de los fenómenos que se dan en la misma. La observación se puede realizar a distintas escalas y por distintos métodos dependiendo del propósito. El actual Trabajo Final de Grado persigue exponer la observación del territorio mediante técnicas de Teledetección, o Detección Remota, y su aplicación en la exploración de hidrocarburos. Desde la Segunda Guerra Mundial el capturar imágenes aéreas de regiones de la Tierra estaba restringido a usos cartográficos en el sentido estricto. Desde aquellos tiempos, hasta ahora, ha acontecido una serie de avances científicos que permiten deducir características intrínsecas de la Tierra mediante mecanismos complejos que no apreciamos a simple vista, pero que, están configurados mediante determinados parámetros geométricos y electrónicos, que permiten generar series temporales de fenómenos físicos que se dan en la Tierra. Hoy en día se puede afirmar que el aprovechamiento del espectro electromagnético está en un punto máximo. Se ha pasado del análisis de la región del espectro visible al análisis del espectro en su totalidad. Esto supone el desarrollo de nuevos algoritmos, técnicas y procesos para extraer la mayor cantidad de información acerca de la interacción de la materia con la radiación electromagnética. La información que generan los sistemas de captura va a servir para la aplicación directa e indirecta de métodos de prospección de hidrocarburos. Las técnicas utilizadas en detección por sensores remotos, aplicadas en campañas geofísicas, son utilizadas para minimizar costes y maximizar resultados en investigaciones de campo. La predicción de anomalías en la zona de estudio depende del analista, quien diseña, calcula y evalúa las variaciones de la energía electromagnética reflejada o emitida por la superficie terrestre. Para dicha predicción se revisarán distintos programas espaciales, se evaluará la bondad de registro y diferenciación espectral mediante el uso de distintas clasificaciones (supervisadas y no supervisadas). Por su influencia directa sobre las observaciones realizadas, se realiza un estudio de la corrección atmosférica; se programan distintos modelos de corrección atmosférica para imágenes multiespectrales y se evalúan los métodos de corrección atmosférica en datos hiperespectrales. Se obtendrá temperatura de la zona de interés utilizando los sensores TM-4, ASTER y OLI, así como un Modelo Digital del Terreno generado por el par estereoscópico capturado por el sensor ASTER. Una vez aplicados estos procedimientos se aplicarán los métodos directos e indirectos, para la localización de zonas probablemente afectadas por la influencia de hidrocarburos y localización directa de hidrocarburos mediante teledetección hiperespectral. Para el método indirecto se utilizan imágenes capturadas por los sensores ETM+ y ASTER. Para el método directo se usan las imágenes capturadas por el sensor Hyperion. ABSTRACT The observation of the Earth is a wonderful tool for studying the different kind of phenomena that occur on its surface. The observation could be done by different scales and by different techniques depending on the information of interest. This Graduate Thesis is intended to expose the territory observation by remote sensing acquiring data systems and the analysis that can be developed to get information of interest. Since Second World War taking aerials photographs of scene was restricted only to a cartographic sense. From these days to nowadays, it have been developed many scientific advances that make capable the interpretation of the surface behavior trough complex systems that are configure by specific geometric and electronic parameters that make possible acquiring time series of the phenomena that manifest on the earthâs surface. Today it is possible to affirm that the exploitation of the electromagnetic spectrum is on a maxim value. In the past, analysis of the electromagnetic spectrum was carry in a narrow part of it, today it is possible to study entire. This implicates the development of new algorithms, process and techniques for the extraction of information about the interaction of matter with electromagnetic radiation. The information that has been acquired by remote sensing sensors is going to be a helpful tool for the exploration of hydrocarbon through direct and vicarious methods. The techniques applied in remote sensing, especially in geophysical campaigns, are employed to minimize costs and maximize results of ground-based geologic investigations. Forecasting of anomalies in the region of interest depends directly on the expertise data analyst who designs, computes and evaluates variations in the electromagnetic energy reflected or emanated from the earthâs surface. For an optimal prediction a review of the capture system take place; assess of the goodness in data acquisition and spectral separability, is carried out by mean of supervised and unsupervised classifications. Due to the direct influence of the atmosphere in the register data, a study of the minimization of its influence has been done; a script has been programed for the atmospheric correction in multispectral data; also, a review of hyperspectral atmospheric correction is conducted. Temperature of the region of interest is computed using the images captured by TM-4, ASTER and OLI, in addition to a Digital Terrain Model generated by a pair of stereo images taken by ASTER sensor. Once these procedures have finished, direct and vicarious methods are applied in order to find altered zones influenced by hydrocarbons, as well as pinpoint directly hydrocarbon presence by mean of hyperspectral remote sensing. For this purpose ETM+ and ASTER sensors are used to apply the vicarious method and Hyperion images are used to apply the direct method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The epresentativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La pérdida de bosques en la Tierra, principalmente en ecosistemas amazónicos, es un factor clave en el proceso del cambio climático. Para revertir esta situación, los mecanismos REDD (Reducing Emission from Deforestation and forest Degradation) están permitiendo la implementación de actividades de protección del clima a través de la reducción de emisiones por deforestación evitada, según los esquemas previstos en el Protocolo de Kioto. El factor técnico más crítico en un proyecto REDD es la determinación de la línea de referencia de emisiones, que define la expectativa futura sobre las emisiones de CO2 de origen forestal en ausencia de esfuerzos adicionales obtenidos como consecuencia de la implementación del programa REDD para frenar este tipo de emisiones. La zona del estudio se ubica en la región de San Martín (Perú), provincia cubierta fundamentalmente por bosques tropicales cuyas tasas de deforestación son de las más altas de la cuenca amazónica. En las últimas décadas del siglo XX, la región empezó un acelerado proceso de deforestación consecuencia de la integración vial con el resto del país y la rápida inmigración desde zonas rurales en busca de nuevas tierras agrícolas. Desde el punto de vista de la investigación llevada a cabo en la tesis doctoral, se pueden destacar dos líneas: 1. El estudio multitemporal mediante imágenes de satélite Landsat 5/TM con el propósito de calcular las pérdidas de bosque entre períodos. El estudio multitemporal se llevó a cabo en el período 1998-2011 utilizando imágenes Landsat 5/TM, aplicando la metodología de Análisis de Mezclas Espectrales (Spectral Mixtures Analysis), que permite descomponer la reflectancia de cada píxel de la imagen en diferentes fracciones de mezcla espectral. En este proceso, las etapas más críticas son el establecimiento de los espectros puros o endemembers y la recopilación de librerías espectrales adecuadas, en este caso de bosques tropicales, que permitan reducir la incertidumbre de los procesos. Como resultado de la investigación se ha conseguido elaborar la línea de referencia de emisiones histórica, para el período de estudio, teniendo en cuenta tanto los procesos de deforestación como de degradación forestal. 2. Relacionar los resultados de pérdida de bosque con factores de causalidad directos e indirectos. La determinación de los procesos de cambio de cobertura forestal utilizando técnicas geoespaciales permite relacionar, de manera significativa, información de los indicadores causales de dichos procesos. De igual manera, se pueden estimar escenarios futuros de deforestación y degradación de acuerdo al análisis de la evolución de dichos vectores, teniendo en cuenta otros factores indirectos o subyacentes, como pueden ser los económicos, sociales, demográficos y medioambientales. La identificación de los agentes subyacentes o indirectos es una tarea más compleja que la de los factores endógenos o directos. Por un lado, las relaciones causa â efecto son mucho más difusas; y, por otro, los efectos pueden estar determinados por fenómenos más amplios, consecuencia de superposición o acumulación de diferentes causas. A partir de los resultados de pérdida de bosque obtenidos mediante la utilización de imágenes Landsat 5/TM, se investigaron los criterios de condicionamiento directos e indirectos que podrían haber influido en la deforestación y degradación forestal en ese período. Para ello, se estudiaron las series temporales, para las mismas fechas, de 9 factores directos (infraestructuras, hidrografía, temperatura, etc.) y 196 factores indirectos (económicos, sociales, demográficos y ambientales, etc.) con, en principio, un alto potencial de causalidad. Finalmente se ha analizado la predisposición de cada factor con la ocurrencia de deforestación y degradación forestal por correlación estadística de las series temporales obtenidas. ABSTRACT Forests loss on Earth, mainly in Amazonian ecosystems, is a key factor in the process of climate change. To reverse this situation, the REDD (Reducing Emission from Deforestation and forest Degradation) are allowing the implementation of climate protection activities through reducing emissions from avoided deforestation, according to the schemes under the Kyoto Protocol. Also, the baseline emissions in a REDD project defines a future expectation on CO2 emissions from deforestation and forest degradation in the absence of additional efforts as a result of REDD in order to stop these emissions. The study area is located in the region of San Martín (Peru), province mainly covered by tropical forests whose deforestation rates are the highest in the Amazon basin. In the last decades of the twentieth century, the region began an accelerated process of deforestation due to road integration with the rest of the country and the rapid migration from rural areas for searching of new farmland. From the point of view of research in the thesis, we can highlight two lines: 1. The multitemporal study using Landsat 5/TM satellite images in order to calculate the forest loss between periods. The multitemporal study was developed in the period 1998-2011 using Landsat 5/TM, applying the methodology of Spectral Mixture Analysis, which allows decomposing the reflectance of each pixel of the image in different fractions of mixture spectral. In this process, the most critical step is the establishment of pure spectra or endemembers spectra, and the collecting of appropriate spectral libraries, in this case of tropical forests, to reduce the uncertainty of the process. As a result of research has succeeded in developing the baseline emissions for the period of study, taking into account both deforestation and forest degradation. 2. Relate the results of forest loss with direct and indirect causation factors. Determining the processes of change in forest cover using geospatial technologies allows relating, significantly, information of the causal indicators in these processes. Similarly, future deforestation and forest degradation scenarios can be estimated according to the analysis of the evolution of these drivers, taking into account other indirect or underlying factors, such as economic, social, demographic and environmental. Identifying the underlying or indirect agents is more complex than endogenous or direct factors. On the one hand, cause - effect relationships are much more diffuse; and, second, the effects may be determined by broader phenomena, due to superposition or accumulation of different causes. From the results of forest loss obtained using Landsat 5/TM, the criteria of direct and indirect conditioning that might have contributed to deforestation and forest degradation in that period were investigated. For this purpose, temporal series, for the same dates, 9 direct factors (infrastructure, hydrography, temperature, etc.) and 196 underlying factors (economic, social, demographic and environmental) with, in principle, a high potential of causality. Finally it was analyzed the predisposition of each factor to the occurrence of deforestation and forest degradation by statistical correlation of the obtained temporal series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La determinación de la línea histórica de deforestación como parte del establecimiento de la línea de referencia de emisiones, en el marco del programa REDD (Reducing Emissions from Deforestation and Forest Degradation), permite medir la evolución de la pérdida de bosque en un periodo definido de tiempo. El objetivo fue calcular la línea histórica de deforestación mediante estudio multitemporal para el periodo 1998-2011, en la región de San Martín (Perú), utilizando la metodología de Análisis de Mezclas Espectrales (Spectral Mixtures Analysis) con imágenes Landsat 5-TM. Palabras clave: teledetección, Landsat 5-TM, análisis de mezclas espectrales, REDD, Protocolo de Kioto, deforestación, Amazonía, SMA Spectral Mixture Analysis for the study of deforestation and establishing reference emissions level within the REDD Program framework. Application to the region of San Martin, Peru. Abstract: Determination of the historical baseline of deforestation as part of establishing the reference emissions level within the REDD (Reducing Emissions from Deforestation and Forest Degradation) Program framework allows for the measurement of the evolution of forest loss over a defined period time. The objective was to estimate the historical baseline of deforestation through a multi-temporal study for the period 1998-2011, in the region of San Martin (Peru), using the methodology of Spectral Mixture Analysis (Mixtures Spectral Analysis) from Landsat 5-TM imagery. Keywords: remote sensing, Landsat 5-TM, spectral mixtures analysis, REDD, Kyoto Protocol, deforestation, Amazon, SMA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disponer de información precisa y actualizada de inventario forestal es una pieza clave para mejorar la gestión forestal sostenible y para proponer y evaluar políticas de conservación de bosques que permitan la reducción de emisiones de carbono debidas a la deforestación y degradación forestal (REDD). En este sentido, la tecnología LiDAR ha demostrado ser una herramienta perfecta para caracterizar y estimar de forma continua y en áreas extensas la estructura del bosque y las principales variables de inventario forestal. Variables como la biomasa, el número de pies, el volumen de madera, la altura dominante, el diámetro o la altura media son estimadas con una calidad comparable a los inventarios tradicionales de campo. La presente tesis se centra en analizar la aplicación de los denominados métodos de masa de inventario forestal con datos LIDAR bajo diferentes condiciones y características de masa forestal (bosque templados puros y mixtos) y utilizando diferentes bases de datos LiDAR (información proveniente de vuelo nacionales e información capturada de forma específica). Como consecuencia de lo anterior, se profundiza en la generación de inventarios forestales continuos con LiDAR en grandes áreas. Los métodos de masa se basan en la búsqueda de relaciones estadísticas entre variables predictoras derivadas de la nube de puntos LiDAR y las variables de inventario forestal medidas en campo con el objeto de generar una cartografía continua de inventario forestal. El rápido desarrollo de esta tecnología en los últimos años ha llevado a muchos países a implantar programas nacionales de captura de información LiDAR aerotransportada. Estos vuelos nacionales no están pensados ni diseñados para fines forestales por lo que es necesaria la evaluación de la validez de esta información LiDAR para la descripción de la estructura del bosque y la medición de variables forestales. Esta información podría suponer una drástica reducción de costes en la generación de información continua de alta resolución de inventario forestal. En el capítulo 2 se evalúa la estimación de variables forestales a partir de la información LiDAR capturada en el marco del Plan Nacional de Ortofotografía Aérea (PNOA-LiDAR) en España. Para ello se compara un vuelo específico diseñado para inventario forestal con la información de la misma zona capturada dentro del PNOA-LiDAR. El caso de estudio muestra cómo el ángulo de escaneo, la pendiente y orientación del terreno afectan de forma estadísticamente significativa, aunque con pequeñas diferencias, a la estimación de biomasa y variables de estructura forestal derivadas del LiDAR. La cobertura de copas resultó más afectada por estos factores que los percentiles de alturas. Considerando toda la zona de estudio, la estimación de la biomasa con ambas bases de datos no presentó diferencias estadísticamente significativas. Las simulaciones realizadas muestran que las diferencias medias en la estimación de biomasa entre un vuelo específico y el vuelo nacional podrán superar el 4% en áreas abruptas, con ángulos de escaneo altos y cuando la pendiente de la ladera no esté orientada hacia la línea de escaneo. En el capítulo 3 se desarrolla un estudio en masas mixtas y puras de pino silvestre y haya, con un enfoque multi-fuente empleando toda la información disponible (vuelos LiDAR nacionales de baja densidad de puntos, imágenes satelitales Landsat y parcelas permanentes del inventario forestal nacional español). Se concluye que este enfoque multi-fuente es adecuado para realizar inventarios forestales continuos de alta resolución en grandes superficies. Los errores obtenidos en la fase de ajuste y de validación de los modelos de área basimétrica y volumen son similares a los registrados por otros autores (usando un vuelo específico y parcelas de campo específicas). Se observan errores mayores en la variable número de pies que los encontrados en la literatura, que pueden ser explicados por la influencia de la metodología de parcelas de radio variable en esta variable. En los capítulos 4 y 5 se evalúan los métodos de masa para estimar biomasa y densidad de carbono en bosques tropicales. Para ello se trabaja con datos del Parque Nacional Volcán Poás (Costa Rica) en dos situaciones diferentes: i) se dispone de una cobertura completa LiDAR del área de estudio (capitulo 4) y ii) la cobertura LiDAR completa no es técnica o económicamente posible y se combina una cobertura incompleta de LiDAR con imágenes Landsat e información auxiliar para la estimación de biomasa y carbono (capitulo 5). En el capítulo 4 se valida un modelo LiDAR general de estimación de biomasa aérea en bosques tropicales y se compara con los resultados obtenidos con un modelo ajustado de forma específica para el área de estudio. Ambos modelos están basados en la variable altura media de copas (TCH por sus siglas en inglés) derivada del modelo digital LiDAR de altura de la vegetación. Los resultados en el área de estudio muestran que el modelo general es una alternativa fiable al ajuste de modelos específicos y que la biomasa aérea puede ser estimada en una nueva zona midiendo en campo únicamente la variable área basimétrica (BA). Para mejorar la aplicación de esta metodología es necesario definir en futuros trabajos procedimientos adecuados de medición de la variable área basimétrica en campo (localización, tamaño y forma de las parcelas de campo). La relación entre la altura media de copas del LiDAR y el área basimétrica (Coeficiente de Stock) obtenida en el área de estudio varía localmente. Por tanto es necesario contar con más información de campo para caracterizar la variabilidad del Coeficiente de Stock entre zonas de vida y si estrategias como la estratificación pueden reducir los errores en la estimación de biomasa y carbono en bosques tropicales. En el capítulo 5 se concluye que la combinación de una muestra sistemática de información LiDAR con una cobertura completa de imagen satelital de moderada resolución (e información auxiliar) es una alternativa efectiva para la realización de inventarios continuos en bosques tropicales. Esta metodología permite estimar altura de la vegetación, biomasa y carbono en grandes zonas donde la captura de una cobertura completa de LiDAR y la realización de un gran volumen de trabajo de campo es económica o/y técnicamente inviable. Las alternativas examinadas para la predicción de biomasa a partir de imágenes Landsat muestran una ligera disminución del coeficiente de determinación y un pequeño aumento del RMSE cuando la cobertura de LiDAR es reducida de forma considerable. Los resultados indican que la altura de la vegetación, la biomasa y la densidad de carbono pueden ser estimadas en bosques tropicales de forma adecuada usando coberturas de LIDAR bajas (entre el 5% y el 20% del área de estudio). ABSTRACT The availability of accurate and updated forest data is essential for improving sustainable forest management, promoting forest conservation policies and reducing carbon emissions from deforestation and forest degradation (REDD). In this sense, LiDAR technology proves to be a clear-cut tool for characterizing forest structure in large areas and assessing main forest-stand variables. Forest variables such as biomass, stem volume, basal area, mean diameter, mean height, dominant height, and stem number can be thus predicted with better or comparable quality than with costly traditional field inventories. In this thesis, it is analysed the potential of LiDAR technology for the estimation of plot-level forest variables under a range of conditions (conifer & broadleaf temperate forests and tropical forests) and different LiDAR capture characteristics (nationwide LiDAR information vs. specific forest LiDAR data). This study evaluates the application of LiDAR-based plot-level methods in large areas. These methods are based on statistical relationships between predictor variables (derived from airborne data) and field-measured variables to generate wall to wall forest inventories. The fast development of this technology in recent years has led to an increasing availability of national LiDAR datasets, usually developed for multiple purposes throughout an expanding number of countries and regions. The evaluation of the validity of nationwide LiDAR databases (not designed specifically for forest purposes) is needed and presents a great opportunity for substantially reducing the costs of forest inventories. In chapter 2, the suitability of Spanish nationwide LiDAR flight (PNOA) to estimate forest variables is analyzed and compared to a specifically forest designed LiDAR flight. This study case shows that scan angle, terrain slope and aspect significantly affect the assessment of most of the LiDAR-derived forest variables and biomass estimation. Especially, the estimation of canopy cover is more affected than height percentiles. Considering the entire study area, biomass estimations from both databases do not show significant differences. Simulations show that differences in biomass could be larger (more than 4%) only in particular situations, such as steep areas when the slopes are non-oriented towards the scan lines and the scan angles are larger than 15º. In chapter 3, a multi-source approach is developed, integrating available databases such as nationwide LiDAR flights, Landsat imagery and permanent field plots from SNFI, with good resultos in the generation of wall to wall forest inventories. Volume and basal area errors are similar to those obtained by other authors (using specific LiDAR flights and field plots) for the same species. Errors in the estimation of stem number are larger than literature values as a consequence of the great influence that variable-radius plots, as used in SNFI, have on this variable. In chapters 4 and 5 wall to wall plot-level methodologies to estimate aboveground biomass and carbon density in tropical forest are evaluated. The study area is located in the Poas Volcano National Park (Costa Rica) and two different situations are analyzed: i) available complete LiDAR coverage (chapter 4) and ii) a complete LiDAR coverage is not available and wall to wall estimation is carried out combining LiDAR, Landsat and ancillary data (chapter 5). In chapter 4, a general aboveground biomass plot-level LiDAR model for tropical forest (Asner & Mascaro, 2014) is validated and a specific model for the study area is fitted. Both LiDAR plot-level models are based on the top-of-canopy height (TCH) variable that is derived from the LiDAR digital canopy model. Results show that the pantropical plot-level LiDAR methodology is a reliable alternative to the development of specific models for tropical forests and thus, aboveground biomass in a new study area could be estimated by only measuring basal area (BA). Applying this methodology, the definition of precise BA field measurement procedures (e.g. location, size and shape of the field plots) is decisive to achieve reliable results in future studies. The relation between BA and TCH (Stocking Coefficient) obtained in our study area in Costa Rica varied locally. Therefore, more field work is needed for assessing Stocking Coefficient variations between different life zones and the influence of the stratification of the study areas in tropical forests on the reduction of uncertainty. In chapter 5, the combination of systematic LiDAR information sampling and full coverage Landsat imagery (and ancillary data) prove to be an effective alternative for forest inventories in tropical areas. This methodology allows estimating wall to wall vegetation height, biomass and carbon density in large areas where full LiDAR coverage and traditional field work are technically and/or economically unfeasible. Carbon density prediction using Landsat imaginery shows a slight decrease in the determination coefficient and an increase in RMSE when harshly decreasing LiDAR coverage area. Results indicate that feasible estimates of vegetation height, biomass and carbon density can be accomplished using low LiDAR coverage areas (between 5% and 20% of the total area) in tropical locations.