3 resultados para Labour and production

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and mechanical media such as film, television, photography, offset, are just examples of how fast and important the technological development had become in society. Nevertheless the outcoming technologies and the continuous development had provided newer and better possibilities every time for having advanced services. Nowadays multi-view video has been developed with different tools and applications, having as main goal to be more innovative and bring within technical offerings in a friendly for all users in general, in terms of managing and accessibility (just internet connection is needed). The intention of all technologies is to generate an innovation in order to gain more users and start being popular, therefore is important to realize an implementation in this case. In such terms realizing about the outreach that Multi View Video, an importance to become more global in this days, an application that supports this aim such as the possibility of language selection within the use of a same scenario has been realized. Finally is important to point out that thanks to the Multi View Video's continuous progress in technology a more intercultural market will be reachable, making of it a shared society growth on the world's global development. � ��� ���� ������� ��� �� ��� ��� �������� ��� ���� ��� ��� ������ ���������� � ���� � �� ���� ���� � ���� �� � � ���� � � ��� ��� �� ��� �� � ��� ��� ��������� �� � ����� ��������� ��� � ��� � ���� ���� ����� ����������� ��� ��� �� � ������������� �� �������� �������� ������� ������� �� ����� �������� ��� � � �� ���� �������� ���� ����� �������� �������� �� ������ ���� �� � ����������� ������������� � � ��!��� � � � �� ������� ��� ��������"������ � �� ���������� �������� ��� �� ������ � ����� ����� ��� ��� �� � �� �� ���� �� ��� �� ���� � � � �� ��� ������ �� �� ��� �� �� ��� �� � �� ��� #�� ��� ������� � ��� �� � �� ������$������� � ��� ��� # ������� � ����� ����� �� ���� �% ���% �������� ��� ����� ����������� �� ������� �� � �� ������ ��� ���� �� ��� �� � ����� �� � �� � �� ����� ��� ��� ���� � � �� ��� ��������� ����� ��� � � �� ���������������������� ����������� ��� #����& ������ �� ��� �� � ���� � ��� � �� � ���'�� �� ��� ��� � % ��� % ���(�� ��� ������ � �� ���� �� ���������� ���� �� � � ��� � ����� '� �� ��� ��� ���������� ��' ������ ������ ������ � ��� �� ����� ����� ��(������������������� ��� � �

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of increasing doses [0 (control: CON), 20, 60, 180 and 540 mg/L incubation medium] of garlic oil (GO) and cinnamaldehyde (CIN) on in vitro ruminal fermentation of two diets. Batch cultures of mixed ruminal microorganisms were inoculated with ruminal fluid from four sheep fed a medium-concentrate diet (MC; 50 : 50 alfalfa hay : concentrate) or four sheep fed a high-concentrate diet (HC; 15 : 85 barley straw : concentrate). Diets MC and HC were representative of those fed to dairy and fattening ruminants, respectively. Samples of each diet were used as incubation substrates for the corresponding inoculum, and the incubation was repeated on 4 different days (four replicates per experimental treatment). There were GO × diet-type and CIN × diet-type interactions (P < 0.001–0.05) for many of the parameters determined, indicating different effects of both oils depending on the diet type. In general, effects of GO were more pronounced for MC compared with HC diet. Supplementation of GO did not affect (P > 0.05) total volatile fatty acid (VFA) production at any dose. For MC diet, GO at 60, 180 and 540 mg/L decreased (P < 0.05) molar proportion of acetate (608, 569 and 547 mmol/mol total VFA, respectively), and increased (P < 0.05) propionate proportion (233, 256 and 268 mmol/mol total VFA, respectively), compared with CON values (629 and 215 mmol/mol total VFA for acetate and propionate, respectively). A minimum dose of 180 mg of GO/L was required to produce similar modifications in acetate and propionate proportions with HC diet, but no effects (P > 0.05) on butyrate proportion were detected. Methane/VFA ratio was reduced (P < 0.05) by GO at 60, 180 and 540 mg/L for MC diet (0.23, 0.16 and 0.10 mol/mol, respectively), and by GO at 20, 60, 180 and 540 mg/L for HC diet (0.19, 0.19, 0.16 and 0.08 mol/mol, respectively), compared with CON (0.26 and 0.21 mol/mol for MC and HC diets, respectively). No effects (P = 0.16–0.85) of GO on final pH and concentrations of NH3-N and lactate were detected. For both diet types, the highest CIN dose decreased (P < 0.05) production of total VFA, gas and methane, which would indicate an inhibition of fermentation. Compared with CON, CIN at 180 mg/L increased (P < 0.05) acetate proportion for the MC (629 and 644 mmol/mol total VFA for CON and CIN, respectively) and HC (525 and 540 mmol/mol total VFA, respectively) diets, without affecting the proportions of any other VFA or total VFA production. Whereas for MC diet CIN at 60 and 180 mg/L decreased (P < 0.05) NH3-N concentrations compared with CON, only a trend (P < 0.10) was observed for CIN at 180 mg/L with the HC diet. Supplementation of CIN up to 180 mg/L did not affect (P = 0.18–0.99) lactate concentrations and production of gas and methane for any diet. The results show that effectiveness of GO and CIN to modify ruminal fermentation may depend on diet type, which would have practical implications if they are confirmed in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.