3 resultados para LS-SVM

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se explica en este capítulo la metodología y sistemas de guiado empleados en la realización de los túneles de Alta Velocidad de la variante de Pajares, así como los trabajos geodésicos y topográficos, redes utilizadas, sistemas de observación, cálculo de las redes geodésicas, desplazamientos errores y cierres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel background modeling system that uses a spatial grid of Support Vector Machines classifiers for segmenting moving objects, which is a key step in many video-based consumer applications. The system is able to adapt to a large range of dynamic background situations since no parametric model or statistical distribution are assumed. This is achieved by using a different classifier per image region that learns the specific appearance of that scene region and its variations (illumination changes, dynamic backgrounds, etc.). The proposed system has been tested with a recent public database, outperforming other state-of-the-art algorithms.