8 resultados para LENTIVIRAL VECTOR
em Universidad Politécnica de Madrid
Resumo:
This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.
Resumo:
Rational invariants on the space of all structures of algebras on a two-dimensional vector space
Resumo:
Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fr´echet spaces. RESUMEN. Sea E un espacio de Banach complejo de dimensión infinita y sea H(E) el espacio de funciones holomorfas definidas en E. En el artículo se demuestra la existencia de un álgebra infinitamente generada en H(E), un subespacio vectorial en H(E) cerrado de dimensión infinita y un subespacio denso en H(E) cuyos elementos no nulos son funciones de tipo no acotado. También se demuestra que el espacio de funciones holomorfas con la topología ? no es un límite inductivo numberable de espacios de Fréchet.
Resumo:
For the decades to come can be foreseen that electricity and water will keep be playing a key role in the countries development, both can be considered the most important energy vectors and its control can be crucial for governments, companies and leaders in general. Energy is essential for all human activities and its availability is critical to economic and social development. In particular, electricity, a form of energy, is required to produce goods, to provide medical assistance and basic civic services in education, to assure availability of clean water, to create conducive environment for prosperity and improvement, and to keep an acceptable quality of life. The way in which electricity is generated from different resources varies through the different countries. Nuclear energy controlled within reactors to steam production, gas, fuel-oil and coal fired in power stations, water, solar and wind energy among others are employed, sometimes not very efficiently, to produce electricity. The so call energy mix of an individual country is formed up by the contribution of each resource or form of energy to the electricity generation market of the so country. During the last decade the establishment of proper energy mixes for countries has gained much importance, and energy drivers should enforce long term plans and policies. Hints, reports and guides giving tracks on energy resources contribution are been developed by noticeable organisations like the IEA (International Energy Agency) or the IAEA (International Atomic Energy Agency) and the WEC (World Energy Council). This paper evaluates energy issues the market and countries are facing today regarding energy mix scheduling and panorama. This paper revises and seeks to improve methodology available that are applicable on energy mix plan definition. Key Factors are identified, established and assessed through this paper for the common implementation, the themes driving the future energy mix methodology proposal. Those have a clear influence and are closely related to future environmental policies. Key Factors take into consideration sustainability, energy security, social and economic growth, climate change, air quality and social stability. The strength of the Key Factors application on energy system planning to different countries is contingent on country resources, location, electricity demand and electricity generation industry, technology available, economic situation and prospects, energy policy and regulation
Resumo:
Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly,generally adapting to each type of virus?vector relationship in a way that enhances transmissionefficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant,cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypiiGlover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferousaphids changed their alighting, settling and probing behaviour activities over time when exposed toCMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate fromCMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), butshowed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min afterrelease. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected overmock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage andaphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph(EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of shortsuperficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (sec-ond hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much lesstime spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour includingan early increase in the number of short superficial probes and intracellular punctures followed by aphloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in aNP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting,settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spreadof the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NPmanner.
Resumo:
To develop a Support Vector Machine (SVM) algorithm as a predictive tool for diagnostic outcome in patients with FE-EOP, based on clinical and biomedical data at the emergence of the illness.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.
Resumo:
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa una función booleana vectorial se puede inicializar de manera muy flexible mediante diferentes estructuras de datas tales como la Tabla de verdad, la Representación de traza y la Forma algebraica normal entre otras. De esta manera VBF permite evaluar los criterios criptográficos más relevantes de los algoritmos de cifra en bloque y de stream, así como funciones hash: por ejemplo, proporciona la no-linealidad, la distancia lineal, el grado algebraico, las estructuras lineales, la distribución de frecuencias de los valores absolutos del espectro Walsh o del espectro de autocorrelación, entre otros criterios. Adicionalmente, VBF puede llevar a cabo operaciones entre funciones booleanas vectoriales tales como la comprobación de igualdad, la composición, la inversión, la suma, la suma directa, el bricklayering (aplicación paralela de funciones booleanas vectoriales como la empleada en el algoritmo de cifra Rijndael), y la adición de funciones coordenada. La tesis también muestra el empleo de la librería VBF en dos aplicaciones prácticas. Por un lado, se han analizado las características más relevantes de los sistemas de cifra en bloque. Por otro lado, combinando VBF con algoritmos de optimización, se han diseñado funciones booleanas cuyas propiedades criptográficas son las mejores conocidas hasta la fecha. ABSTRACT This thesis develops the theoretical foundations and designs an open collection of C++ classes, called VBF, designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This new implementation uses the NTL library from Victor Shoup, adding new modules which complement the existing ones making VBF better suited for cryptography. The fundamental class representing a vector Boolean function can be initialized in a flexible way via several alternative types of data structures such as Truth Table, Trace Representation, Algebraic Normal Form (ANF) among others. This way, VBF allows the evaluation of the most relevant cryptographic criteria for block and stream ciphers as well as for hash functions: for instance, it provides the nonlinearity, the linearity distance, the algebraic degree, the linear structures, the frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, VBF can perform operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions. This thesis also illustrates the use of VBF in two practical applications. On the one hand, the most relevant properties of the existing block ciphers have been analysed. On the other hand, by combining VBF with optimization algorithms, new Boolean functions have been designed which have the best known cryptographic properties up-to-date.