16 resultados para L2
em Universidad Politécnica de Madrid
Resumo:
Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards UNE EN ISO 140-4 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. A parameter that allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at different points of the room. In this work, for a wide number of measurements following standards UNE EN ISO 140-4 we analyzed qualitatively the behaviour of the standard deviation for L1 and L2. The study of sound fields in enclosed spaces is very difficult. There are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. In general, we observe that the L1 and L2 standard deviations contain peaks and dips independent on characteristics of the rooms at single frequencies that could correspond to critical frequencies of walls, floors and windows or even to temporal alterations of the sound field. Also, in most measurements according to UNE EN ISO 140-4 a large similitude between L1 and L2 standard deviation is found. We believe that such result points to a coupled system between source and receiving rooms, mainly at low frequencies the shape of the L1 and L2 standard deviations is comparable to the velocity level standard deviation on a wall
Resumo:
En los ensayos de aislamiento acústico según normas UNE EN ISO 140-4 y 140-5 el valor de L2 es un promedio espacio-temporal de los niveles de presión sonora medidos en diferentes posiciones de la sala receptora. La desviación estándar de estos valores se puede considerar como una medida de la uniformidad del campo sonoro en el recinto. Se analiza este parámetro en función de la frecuencia y se propone un cálculo teórico del mismo como una incertidumbre combinada de la desviación estándar derivada de modelos teóricos centrados en la geometría del recinto y la desviación estándar asociada a la vibración de la pared separadora
Resumo:
Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite’s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical length is dynamically equivalent to the perturbation produced by an oblate central body on a mass-point satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.
Resumo:
Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite?s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical dimension is dynamically equivalent to the perturbation produced by an oblate central body on a masspoint satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.
Resumo:
Previamente se ha establecido que un parámetro que permite cuantificar la variación espacial de L2 es su desviación estándar. Dados los múltiples factores de los que depende la transmisión del sonido es difícil establecer un modelo teórico que permita explicar la dependencia espectral de este parámetro. En este trabajo se analiza el efecto de la desviación estándar de la vibración no solo de la pared separadora sino de todas las paredes que delimitan el volumen del recinto receptor.
Resumo:
The Monge–Ampère (MA) equation arising in illumination design is highly nonlinear so that the convergence of the MA method is strongly determined by the initial design. We address the initial design of the MA method in this paper with the L2 Monge-Kantorovich (LMK) theory, and introduce an efficient approach for finding the optimal mapping of the LMK problem. Three examples, including the beam shaping of collimated beam and point light source, are given to illustrate the potential benefits of the LMK theory in the initial design. The results show the MA method converges more stably and faster with the application of the LMK theory in the initial design.
Resumo:
El Consejo de Europa ha elaborado unas directrices en materia lingüística para todos los países de la UE, que se encuentran en el Common European Framework of Reference for Languages CEFRL (2001) y permiten la equiparación de los niveles de competencia comunicativa de los distintos programas y asignaturas de L2. Inmersos en el proceso de convergencia europea de la educación superior, esta comunicación comenzará explicando los criterios y fases para el desarrollo de un PEL (Portafolio Europeo de Lenguas), en el contexto científico y técnico, por parte del grupo de investigación DISCYT de la UPM. Presentará un resumen de las destrezas comunicativas, las situaciones de aprendizaje y uso de la lengua, y los tipos de texto que nuestros alumnos necesitan para desenvolverse en su entorno académico y profesional y facilitar la movilidad. La elaboración del PEL académico y profesional (ACPEL Portfolio) ha obteniendo como resultados la profundización en el análisis del discurso científico y técnico desde la lingüística cognitiva y la socio-pragmática, la actualización de las necesidades de aprendizaje de lenguas de los estudiantes de la UPM dentro del al Espacio Europeo de Educación Superior (EEES), y la capacitación de los alumnos para autoevaluar su progreso de aprendizaje de lenguas
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy
Resumo:
This paper concerns the characterization as frames of some sequences in U-invariant spaces of a separable Hilbert space H where U denotes an unitary operator defined on H ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces in L2 (R), where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In so doing, we need that the unitary operator U belongs to a continuous group of unitary operators.
Resumo:
Dynamics of binary mixtures such as polymer blends, and fluids near the critical point, is described by the model-H, which couples momentum transport and diffusion of the components [1]. We present an extended version of the model-H that allows to study the combined effect of phase separation in a polymer blend and surface structuring of the film itself [2]. We apply it to analyze the stability of vertically stratified base states on extended films of polymer blends and show that convective transport leads to new mechanisms of instability as compared to the simpler diffusive case described by the Cahn- Hilliard model [3, 4]. We carry out this analysis for realistic parameters of polymer blends used in experimental setups such as PS/PVME. However, geometrically more complicated states involving lateral structuring, strong deflections of the free surface, oblique diffuse interfaces, checkerboard modes, or droplets of a component above of the other are possible at critical composition solving the Cahn Hilliard equation in the static limit for rectangular domains [5, 6] or with deformable free surfaces [6]. We extend these results for off-critical compositions, since balanced overall composition in experiments are unusual. In particular, we study steady nonlinear solutions of the Cahn-Hilliard equation for bidimensional layers with fixed geometry and deformable free surface. Furthermore we distinguished the cases with and without energetic bias at the free surface. We present bifurcation diagrams for off-critical films of polymer blends with free surfaces, showing their free energy, and the L2-norms of surface deflection and the concentration field, as a function of lateral domain size and mean composition. Simultaneously, we look at spatial dependent profiles of the height and concentration. To treat the problem of films with arbitrary surface deflections our calculations are based on minimizing the free energy functional at given composition and geometric constraints using a variational approach based on the Cahn-Hilliard equation. The problem is solved numerically using the finite element method (FEM).
Resumo:
In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space H, also called atomic subspaces. These spaces are a generalization of the well-known shift- invariant subspaces in L2 (R); here the space L2 (R) is replaced by H, and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in Aa. Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.
Resumo:
Four periodically time-varying methane–air laminar coflow jet diffusion flames, each forced by pulsating the fuel jet's exit velocity Uj sinusoidally with a different modulation frequency wj and with a 50% amplitude variation, have been computed. Combustion of methane has been modeled by using a chemical mechanism with 15 species and 42 reactions, and the solution of the unsteady Navier–Stokes equations has been obtained numerically by using a modified vorticity-velocity formulation in the limit of low Mach number. The effect of wj on temperature and chemistry has been studied in detail. Three different regimes are found depending on the flame's Strouhal number S=awj/Uj, with a denoting the fuel jet radius. For small Strouhal number (S=0.1), the modulation introduces a perturbation that travels very far downstream, and certain variables oscillate at the frequency imposed by the fuel jet modulation. As the Strouhal number grows, the nondimensional frequency approaches the natural frequency of oscillation of the flickering flame (S≃0.2). A coupling with the pulsation frequency enhances the effect of the imposed modulation and a vigorous pinch-off is observed for S=0.25 and S=0.5. Larger values of S confine the oscillation to the jet's near-exit region, and the effects of the pulsation are reduced to small wiggles in the temperature and concentration values. Temperature and species mass fractions change appreciably near the jet centerline, where variations of over 2% for the temperature and 15% and 40% for the CO and OH mass fractions, respectively, are found. Transverse to the jet movement, however, the variations almost disappear at radial distances on the order of the fuel jet radius, indicating a fast damping of the oscillation in the spanwise direction.
Resumo:
Se comparan y contrastan las destrezas requeridas para la comprensión lectora con aquellas que se necesitan para la producción de escritos correctos, en inglés, coherentes y bien cohesionados. Se comentan las actividades didácticas relacionadas con ello.The aim of this article is to establish the relevance of teaching reading and writing skills to students at Madrid Polytechnic University, and to show the relationship and interdependence of these activities in EAP courses. The skills involved in reading and writing processes for academic purposes for L2 students are compared and commented on from a rhetorical point of view. Learning tasks based on text-type analysis are recommended as adequate activities to build schemata for writing and represent a synthesis of the teaching objectives proposed for reading and writing English courses.
Resumo:
This article explores one aspect of the processing perspective in L2 learning in an EST context: the processing of new content words, in English, of the type ‘cognates’ and ‘false friends’, by Spanish speaking engineering students. The paper does not try to offer a comprehensive overview of language acquisition mechanisms, but rather it is intended to review more narrowly how our conceptual systems, governed by intricately linked networks of neural connections in the brain, make language development possible, creating, at the same time, some L2 processing problems. The case of ‘cognates and false friends’ in specialised contexts is brought here to illustrate some of the processing problems that the L2 learner has to confront, and how mappings in the visual, phonological and semantic (conceptual) brain structures function in second language processing of new vocabulary. Resumen Este artículo pretende reflexionar sobre un aspecto de la perspectiva del procesamiento de segundas lenguas (L2) en el contexto del ICT: el procesamiento de palabras nuevas, en inglés, conocidas como “cognados” y “falsos amigos”, por parte de estudiantes de ingeniería españoles. No se pretende ofrecer una visión completa de los mecanismos de adquisición del lenguaje, más bien se intenta mostrar cómo nuestro sistema conceptual, gobernado por una complicada red de conexiones neuronales en el cerebro, hace posible el desarrollo del lenguaje, aunque ello conlleve ciertas dificultades en el procesamiento de segundas lenguas. El caso de los “cognados” y los “falsos amigos”, en los lenguajes de especialidad, se trae para ilustrar algunos de los problemas de procesamiento que el estudiante de una lengua extranjera tiene que afrontar y el funcionamiento de las correspondencias entre las estructuras visuales, fonológicas y semánticas (conceptuales) del cerebro en el procesamiento de nuevo vocabulario.