2 resultados para L indicator
em Universidad Politécnica de Madrid
Resumo:
Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site
Resumo:
Improved management of nitrogen (N) in agriculture is necessary to achieve a sustainable balance between the production of food and other biomass, and the unwanted effects of N on water pollution, greenhouse gas emissions, biodiversity deterioration and human health. To analyse farm N-losses and the complex interactions within farming systems, efficient methods for identifying emissions hotspots and evaluating mitigation measures are therefore needed. The present paper aims to fill this gap at the farm and landscape scales. Six agricultural landscapes in Poland (PL), the Netherlands (NL), France (FR), Italy (IT), Scotland (UK) and Denmark (DK) were studied, and a common method was developed for undertaking farm inventories and the derivation of farm N balances, N surpluses and for evaluating uncertainty for the 222 farms and 11 440 ha of farmland included in the study. In all landscapes, a large variation in the farm N surplus was found, and thereby a large potential for reductions. The highest average N surpluses were found in the most livestock-intensive landscapes of IT, FR, and NL; on average 202 ± 28, 179 ± 63 and 178 ± 20 kg N ha−1 yr−1, respectively. All landscapes showed hotspots, especially from livestock farms, including a special UK case with large-scale landless poultry farming. Overall, the average N surplus from the land-based UK farms dominated by extensive sheep and cattle grazing was only 31 ± 10 kg N ha−1 yr−1, but was similar to the N surplus of PL and DK (122 ± 20 and 146 ± 55 kg N ha−1 yr−1, respectively) when landless poultry farming was included. We found farm N balances to be a useful indicator for N losses and the potential for improving N management. Significant correlations to N surplus were found, both with ammonia air concentrations and nitrate concentrations in soils and groundwater, measured during the period of N management data collection in the landscapes from 2007–2009. This indicates that farm N surpluses may be used as an independent dataset for validation of measured and modelled N emissions in agricultural landscapes. No significant correlation was found with N measured in surface waters, probably because of spatial and temporal variations in groundwater buffering and biogeochemical reactions affecting N flows from farm to surface waters. A case study of the development in N surplus from the landscape in DK from 1998–2008 showed a 22% reduction related to measures targeted at N emissions from livestock farms. Based on the large differences in N surplus between average N management farms and the most modern and N-efficient farms, it was concluded that additional N-surplus reductions of 25–50%, as compared to the present level, were realistic in all landscapes. The implemented N-surplus method was thus effective for comparing and synthesizing results on farm N emissions and the potentials of mitigation options. It is recommended for use in combination with other methods for the assessment of landscape N emissions and farm N efficiency, including more detailed N source and N sink hotspot mapping, measurements and modelling.