3 resultados para Knowledge Creation
em Universidad Politécnica de Madrid
Resumo:
There is growing concern over the challenges for innovation in Freight Pipeline industry. Since the early works of Chesbrough a decade ago, we have learned a lot about the content, context and process of open innovation. However, much more research is needed in Freight Pipeline Industry. The reality is that few corporations have institutionalized open innovation practices in ways that have enabled substantial growth or industry leadership. Based on this, we pursue the following question: How does a firm’s integration into knowledge networks depend on its ability to manage knowledge? A competence-based model for freight pipeline organizations is analysed, this model should be understood by any organization in order to be successful in motivating professionals who carry out innovations and play a main role in collaborative knowledge creation processes. This paper aims to explain how can open innovation achieve its potential in most Freight Pipeline Industries.
Resumo:
From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help transferring the knowledge between those generations in the way that it can be possible.
Resumo:
We present a theoretical framework and a case study for reusing the same conceptual and computational methodology for both temporal abstraction and linear (unidimensional) space abstraction, in a domain (evaluation of traffic-control actions) significantly different from the one (clinical medicine) in which the method was originally used. The method, known as knowledge-based temporal abstraction, abstracts high-level concepts and patterns from time-stamped raw data using a formal theory of domain-specific temporal-abstraction knowledge. We applied this method, originally used to interpret time-oriented clinical data, to the domain of traffic control, in which the monitoring task requires linear pattern matching along both space and time. First, we reused the method for creation of unidimensional spatial abstractions over highways, given sensor measurements along each highway measured at the same time point. Second, we reused the method to create temporal abstractions of the traffic behavior, for the same space segments, but during consecutive time points. We defined the corresponding temporal-abstraction and spatial-abstraction domain-specific knowledge. Our results suggest that (1) the knowledge-based temporal-abstraction method is reusable over time and unidimensional space as well as over significantly different domains; (2) the method can be generalized into a knowledge-based linear-abstraction method, which solves tasks requiring abstraction of data along any linear distance measure; and (3) a spatiotemporal-abstraction method can be assembled from two copies of the generalized method and a spatial-decomposition mechanism, and is applicable to tasks requiring abstraction of time-oriented data into meaningful spatiotemporal patterns over a linear, decomposable space, such as traffic over a set of highways.