3 resultados para Knowledge (Theory)

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a theoretical framework and a case study for reusing the same conceptual and computational methodology for both temporal abstraction and linear (unidimensional) space abstraction, in a domain (evaluation of traffic-control actions) significantly different from the one (clinical medicine) in which the method was originally used. The method, known as knowledge-based temporal abstraction, abstracts high-level concepts and patterns from time-stamped raw data using a formal theory of domain-specific temporal-abstraction knowledge. We applied this method, originally used to interpret time-oriented clinical data, to the domain of traffic control, in which the monitoring task requires linear pattern matching along both space and time. First, we reused the method for creation of unidimensional spatial abstractions over highways, given sensor measurements along each highway measured at the same time point. Second, we reused the method to create temporal abstractions of the traffic behavior, for the same space segments, but during consecutive time points. We defined the corresponding temporal-abstraction and spatial-abstraction domain-specific knowledge. Our results suggest that (1) the knowledge-based temporal-abstraction method is reusable over time and unidimensional space as well as over significantly different domains; (2) the method can be generalized into a knowledge-based linear-abstraction method, which solves tasks requiring abstraction of data along any linear distance measure; and (3) a spatiotemporal-abstraction method can be assembled from two copies of the generalized method and a spatial-decomposition mechanism, and is applicable to tasks requiring abstraction of time-oriented data into meaningful spatiotemporal patterns over a linear, decomposable space, such as traffic over a set of highways.