3 resultados para Isolate

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the addition of soy protein isolate (SPI) (0, 15, 30, 45 and 60 g kg ) on viscoelastic properties, large deformation measurements and microstructure of fresh (FM) and frozen/thawed (F/TM) mashed potatoes was investigated. Rheological data showed weak gel behaviour for both FM and F/TM potatoes without and with added SPI together with a signi?cant decrease of system viscoelasticity (G and G ) with increasing SPI volume fraction, primarily attributed to the no interaction between the amylose/amylopectine matrix and the dispersed SPI particles or aggregates as revealed by scanning electron microscopy (SEM). Micrographs also showed that SPI formed white coarse aggregates. A freeze/thaw cycle produced a more signi?cant decrease in viscoelastic functions, due to superior aggregation of denatured SPI and reduced water activity. In F/TM samples, high correlations between small and large deformation measurements were found. Results may be useful for technological applications in SPI-enriched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of adding soy protein isolate (SPI) and long-chain perception, trained and untrained panel inulin (INL) blends with 10 different SPI : INL ratios on the textural, rheological and 17 microstructural properties of freshly made and frozen/thawed potato puree. All the potato puree samples were subjected to a sensory texture pro?le analysis and a 21 trained panel rated the intensity of six descriptors, while an untrained panel did the same on six selected frozen/thawed products. The main SPI : INL ratio effect remained signi?cant for all the descriptors evaluated, when the analysis of variance was applied considering the untrained assessors as random effects. However, only trained panel scores for creaminess corresponded well with untrained assessor. Rheological ?ow index values were linked with variations in perceived consistency, and geometric and surface textural attributes were explained by structural features such as the presence of INL crystallites and SPI coarse strands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soy protein isolate is typical vegetable protein with health-enhancing activities. Inulin, a prebiotic no digestible carbohydrate, has functional properties. A mashed potato serving of 200 g with added soy protein isolate and inulin concentrations of 15?60 g kg provides from 3 to 12 g of soy protein isolate and/or inulin, respectively. Currently, no information is available about the possible texture-modifying effect of this non-ionizable polar carbohydrate in different soy-based food systems. In this study, the effect of the addition of soy protein isolate and inulin blends at different soy protein isolate: inulin ratios on the degree of inulin polymerization and the rheological and structural properties of fresh mashed and frozen/thawed mashed potatoes were evaluated. The inulin chemical structure remained intact throughout the various treatments, and soy protein isolate did not affect inulin composition being a protein compatible with this fructan. Small-strain rheology showed that both ingredients behaved like soft fillers. In the frozen/thawed mashed potatoes samples,0 addition of 30 : 30 and 15 : 60 blend ratios significantly increased elasticity (G value) compared with 0 : 0 control, consequently reducing the freeze/thaw stability conferred by the cryoprotectants. Inulin crystallites caused a significant strengthening effect on soy protein isolate gel. Micrographs revealed that soy protein isolate supports the inulin structure by building up a second fine-stranded network. Thereby, possibility of using soy protein isolate and inulin in combination with mashed potatoes to provide a highly nutritious and healthy product is promising.