2 resultados para Iron impurities
em Universidad Politécnica de Madrid
Resumo:
To optimize the last high temperature step of a standard solar cell fabrication process (the contact cofiring step), the aluminium gettering is incorporated in the Impurity-to-Efficiency simulation tool, so that it models the phosphorus and aluminium co-gettering effect on iron impurities. The impact of iron on the cell efficiency will depend on the balance between precipitate dissolution and gettering. Gettering efficiency is similar in a wide range of peak temperatures (600-850 ºC), so that this peak temperature can be optimized favoring other parameters (e.g. ohmic contact). An industrial co-firing step can enhance the co-gettering effect by adding a temperature plateau after the peak of temperature. For highly contaminated materials, a short plateau (menor que 2 min) at low temperature (600 ºC) is shown to reduce the dissolved iron.
Resumo:
The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional time