8 resultados para Ions Ti3 and Ti4

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sintering behaviour and the microstructural evolution of W6+, Nb5+ and Ti4+iron-substituted BiFeO3 ceramics have been analyzed. The obtained results show that W6+ and Nb5+ ions interact with the secondary phases usually present in these materials, thus altering the solid state formation of the BiFeO3 phase. In contrast, Ti4+ ions incorporate into the perovskite structure, leading to an exceptionally low proportion of secondary phases. In addition to this, BiFe0.95Ti0.05O3 materials present a dense microstructure with submicronic and nanostructured grains, clearly smaller than those in the undoped materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Seâ>â2âkeV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5âkeV is necessary to create a non bridging oxygen hole center-Eâ² (NBOHC/Eâ²) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Justification of the need and demand of experimental facilities to test and validate materials for first wall in laser fusion reactors - Characteristics of the laser fusion products - Current ?possible? facilities for tests Ultraintense Lasers as ?complete? solution facility - Generation of ion pulses - Generation of X-ray pulses - Generation of other relevant particles (electrons, neutrons..)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionoluminescence (IL) of the two SiO2 phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power Se is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce ion and X-ray ICF bursts for the characterization and validation of plasma facing components. The possibility of using a laser neutron source for material testing will also be discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion beams is investigated by means of numerical simulations. Light and intermediate ions such as lithium, carbon, aluminum and vanadium have been considered. Simulations show that the minimum ignition energies of an ideal configuration of compressed Deuterium-Tritium are almost independent on the ion atomic number. However, they are obtained for increasing ion energies, which scale, approximately, as Z2, where Z is the ion atomic number. Assuming that the ion beam can be focused into 10 ?m spots, a new irradiation scheme is proposed to reduce the ignition energies. The combination of intermediate Z ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the number of ions required for ignition by, roughly, three orders of magnitude when compared with the standard proton fast ignition scheme.