6 resultados para Investigación médica

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Durante la última década la investigación en nanomedicina ha generado gran cantidad de datos, heterogéneos, distribuidos en múltiples fuentes de información. El uso de las Tecnologías de la Información y la Comunicación (TIC) puede facilitar la investigación médica a escala nanométrica, proporcionando mecanismos y herramientas que permitan gestionar todos esos datos de una manera inteligente. Mientras que la informática biomédica comprende el procesamiento y gestión de la información generada desde el nivel de salud pública y aplicación clínica hasta el nivel molecular, la nanoinformática extiende este ámbito para incluir el “nivel nano”, ocupándose de gestionar y analizar los resultados generados durante la investigación en nanomedicina y desarrollar nuevas líneas de trabajo en este espacio interdisciplinar. En esta nueva área científica, la nanoinformática (que podría consolidarse como una auténtica disciplina en los próximos años), elGrupo de Informática Biomédica (GIB) de la Universidad Politécnica de Madrid (UPM) participa en numerosas iniciativas, que se detallan a continuación.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RESUMEN Las enfermedades cardiovasculares constituyen en la actualidad la principal causa de mortalidad en el mundo y se prevé que sigan siéndolo en un futuro, generando además elevados costes para los sistemas de salud. Los dispositivos cardiacos implantables constituyen una de las opciones para el diagnóstico y el tratamiento de las alteraciones del ritmo cardiaco. La investigación clínica con estos dispositivos alcanza gran relevancia para combatir estas enfermedades que tanto afectan a nuestra sociedad. Tanto la industria farmacéutica y de tecnología médica, como los propios investigadores, cada día se ven involucrados en un mayor número de proyectos de investigación clínica. No sólo el incremento en su volumen, sino el aumento de la complejidad, están generando mayores gastos en las actividades asociadas a la investigación médica. Esto está conduciendo a las compañías del sector sanitario a estudiar nuevas soluciones que les permitan reducir los costes de los estudios clínicos. Las Tecnologías de la Información y las Comunicaciones han facilitado la investigación clínica, especialmente en la última década. Los sistemas y aplicaciones electrónicos han proporcionado nuevas posibilidades en la adquisición, procesamiento y análisis de los datos. Por otro lado, la tecnología web propició la aparición de los primeros sistemas electrónicos de adquisición de datos, que han ido evolucionando a lo largo de los últimos años. Sin embargo, la mejora y perfeccionamiento de estos sistemas sigue siendo crucial para el progreso de la investigación clínica. En otro orden de cosas, la forma tradicional de realizar los estudios clínicos con dispositivos cardiacos implantables precisaba mejorar el tratamiento de los datos almacenados por estos dispositivos, así como para su fusión con los datos clínicos recopilados por investigadores y pacientes. La justificación de este trabajo de investigación se basa en la necesidad de mejorar la eficiencia en la investigación clínica con dispositivos cardiacos implantables, mediante la reducción de costes y tiempos de desarrollo de los proyectos, y el incremento de la calidad de los datos recopilados y el diseño de soluciones que permitan obtener un mayor rendimiento de los datos mediante la fusión de datos de distintas fuentes o estudios. Con este fin se proponen como objetivos específicos de este proyecto de investigación dos nuevos modelos: - Un modelo de recuperación y procesamiento de datos para los estudios clínicos con dispositivos cardiacos implantables, que permita estructurar y estandarizar estos procedimientos, con el fin de reducir tiempos de desarrollo Modelos de Métrica para Sistemas Electrónicos de Adquisición de Datos y de Procesamiento para Investigación Clínica con Dispositivos Cardiacos Implantables de estas tareas, mejorar la calidad del resultado obtenido, disminuyendo en consecuencia los costes. - Un modelo de métrica integrado en un Sistema Electrónico de Adquisición de Datos (EDC) que permita analizar los resultados del proyecto de investigación y, particularmente del rendimiento obtenido del EDC, con el fin de perfeccionar estos sistemas y reducir tiempos y costes de desarrollo del proyecto y mejorar la calidad de los datos clínicos recopilados. Como resultado de esta investigación, el modelo de procesamiento propuesto ha permitido reducir el tiempo medio de procesamiento de los datos en más de un 90%, los costes derivados del mismo en más de un 85% y todo ello, gracias a la automatización de la extracción y almacenamiento de los datos, consiguiendo una mejora de la calidad de los mismos. Por otro lado, el modelo de métrica posibilita el análisis descriptivo detallado de distintos indicadores que caracterizan el rendimiento del proyecto de investigación clínica, haciendo factible además la comparación entre distintos estudios. La conclusión de esta tesis doctoral es que los resultados obtenidos han demostrado que la utilización en estudios clínicos reales de los dos modelos desarrollados ha conducido a una mejora en la eficiencia de los proyectos, reduciendo los costes globales de los mismos, disminuyendo los tiempos de ejecución, e incrementando la calidad de los datos recopilados. Las principales aportaciones de este trabajo de investigación al conocimiento científico son la implementación de un sistema de procesamiento inteligente de los datos almacenados por los dispositivos cardiacos implantables, la integración en el mismo de una base de datos global y optimizada para todos los modelos de dispositivos, la generación automatizada de un repositorio unificado de datos clínicos y datos de dispositivos cardiacos implantables, y el diseño de una métrica aplicada e integrable en los sistemas electrónicos de adquisición de datos para el análisis de resultados de rendimiento de los proyectos de investigación clínica. ABSTRACT Cardiovascular diseases are the main cause of death worldwide and it is expected to continue in the future, generating high costs for health care systems. Implantable cardiac devices have become one of the options for diagnosis and treatment of cardiac rhythm disorders. Clinical research with these devices has acquired great importance to fight against these diseases that affect so many people in our society. Both pharmaceutical and medical technology companies, and also investigators, are involved in an increasingly number of clinical research projects. The growth in volume and the increase in medical research complexity are contributing to raise the expenditure level associated with clinical investigation. This situation is driving health care sector companies to explore new solutions to reduce clinical trial costs. Information and Communication Technologies have facilitated clinical research, mainly in the last decade. Electronic systems and software applications have provided new possibilities in the acquisition, processing and analysis of clinical studies data. On the other hand, web technology contributed to the appearance of the first electronic data capture systems that have evolved during the last years. Nevertheless, improvement of these systems is still a key aspect for the progress of clinical research. On a different matter, the traditional way to develop clinical studies with implantable cardiac devices needed an improvement in the processing of the data stored by these devices, and also in the merging of these data with the data collected by investigators and patients. The rationale of this research is based on the need to improve the efficiency in clinical investigation with implantable cardiac devices, by means of reduction in costs and time of projects development, as well as improvement in the quality of information obtained from the studies and to obtain better performance of data through the merging of data from different sources or trials. The objective of this research project is to develop the next two models: • A model for the retrieval and processing of data for clinical studies with implantable cardiac devices, enabling structure and standardization of these procedures, in order to reduce the time of development of these tasks, to improve the quality of the results, diminish therefore costs. • A model of metric integrated in an Electronic Data Capture system (EDC) that allow to analyze the results of the research project, and particularly the EDC performance, in order to improve those systems and to reduce time and costs of the project, and to get a better quality of the collected clinical data. As a result of this work, the proposed processing model has led to a reduction of the average time for data processing by more than 90 per cent, of related costs by more than 85 per cent, and all of this, through automatic data retrieval and storage, achieving an improvement of quality of data. On the other hand, the model of metrics makes possible a detailed descriptive analysis of a set of indicators that characterize the performance of each research project, allowing inter‐studies comparison. This doctoral thesis results have demonstrated that the application of the two developed models in real clinical trials has led to an improvement in projects efficiency, reducing global costs, diminishing time in execution, and increasing quality of data collected. The main contributions to scientific knowledge of this research work are the implementation of an intelligent processing system for data stored by implantable cardiac devices, the integration in this system of a global and optimized database for all models of devices, the automatic creation of an unified repository of clinical data and data stored by medical devices, and the design of a metric to be applied and integrated in electronic data capture systems to analyze the performance results of clinical research projects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los tratamientos biopelícula fueron unos de los primeros tratamientos biológicos que se aplicaron en las aguas residuales. Los tratamientos biopelícula presentan importantes ventajas frente a los cultivos en suspensión, sin embargo, el control de los tratamientos biopelícula es complicado y su modelización también. Las bases teóricas del comportamiento de las biopelículas empezaron a desarrollarse fundamentalmente a partir de los años 80. Dado que el proceso es complejo con ecuaciones de difícil resolución, estas conceptualizaciones han sido consideradas durante años como ejercicios matemáticos más que como herramientas de diseño y simulación. Los diseños de los reactores estaban basados en experiencias de plantas piloto o en comportamientos empíricos de determinadas plantas. Las ecuaciones de diseño eran regresiones de los datos empíricos. La aplicabilidad de las ecuaciones se reducía a las condiciones particulares de la planta de la que provenían los datos empíricos. De tal forma que existía una gran variedad y diversidad de ecuaciones empíricas para cada tipo de reactor. La investigación médica durante los años 90 centró su atención en la formación y eliminación de las biopelículas. Gracias al desarrollo de nuevas prácticas de laboratorio que permitían estudiar el interior de las biopelículas y gracias también al aumento de la capacidad de los ordenadores, la simulación del comportamiento de las biopelículas tomó un nuevo impulso en esta década. El desarrollo de un tipo de biopelículas, fangos granulares, en condiciones aerobias realizando simultaneamente procesos de eliminación de nutrientes ha sido recientemente patentado. Esta patente ha recibido numerosos premios y reconocimientos internacionales tales como la Eurpean Invention Award (2012). En 1995 se descubrió que determinadas bacterias podían realizar un nuevo proceso de eliminación de nitrógeno denominado Anammox. Este nuevo tipo de proceso de eliminación de nitrógeno tiene el potencial de ofrecer importantes mejoras en el rendimiento de eliminación y en el consumo de energía. En los últimos 10 años, se han desarrollado una serie de tratamientos denominados “innovadores” de eliminación de nutrientes. Dado que no resulta posible el establecimiento de estas bacterias Anammox en fangos activos convencionales, normalmente se recurre al uso de cultivos biopelícula. La investigación se ha centrado en el desarrollo de estos procesos innovadores en cultivos biopelícula, en particular en los fangos granulares y MBBR e IFAs, con el objeto de establecer las condiciones bajo las cuales estos procesos se pueden desarrollar de forma estable. Muchas empresas y organizaciones buscan una segunda patente. Una cuestión principal en el desarrollo de estos procesos se encuentra la correcta selección de las condiciones ambientales y de operación para que unas bacterias desplacen a otras en el interior de las biopelículas. El diseño de plantas basado en cultivos biopelícula con procesos convencionales se ha realizado normalmente mediante el uso de métodos empíricos y semi-empíricos. Sin embargo, los criterios de selección avanzados aplicados en los Tratamientos Innovadores de Eliminación de Nitrógeno unido a la complejidad de los mecanismos de transporte de sustratos y crecimiento de la biomasa en las biopelículas, hace necesario el uso de herramientas de modelización para poder conclusiones no evidentes. Biofilms were one of the first biological treatments used in the wastewater treatment. Biofilms exhibit important advantages over suspended growth activated sludge. However, controlling biofilms growth is complicated and likewise its simulation. The theoretical underpinnings of biofilms performance began to be developed during 80s. As the equations that govern the growth of biofilms are complex and its resolution is challenging, these conceptualisations have been considered for years as mathematical exercises instead of practical design and simulation tools. The design of biofilm reactors has been based on performance information of pilot plants and specific plants. Most of the times, the designing equations were simple regressions of empirical data. The applicability of these equations were confined to the particular conditions of the plant from where the data came from. Consequently, there were a wide range of design equations for each type of reactor During 90s medical research focused its efforts on how biofilm´s growth with the ultimate goal of avoiding it. Thanks to the development of new laboratory techniques that allowed the study the interior of the biofilms and thanks as well to the development of the computers, simulation of biofilms’ performance had a considerable evolution during this decade. In 1995 it was discovered that certain bacteria can carry out a new sort of nutrient removal process named Anammox. This new type of nutrient removal process potentially can enhance considerably the removal performance and the energy consumption. In the last decade, it has been developed a range of treatments based on the Anammox generally named “Innovative Nutrient Removal Treatments”. As it is not possible to cultivate Anammox bacteria in activated sludge, normally scientists and designers resort to the use of biofilms. A critical issue in the development of these innovative processes is the correct selection of environment and operation conditions so as to certain bacterial population displace to others bacteria within the biofilm. The design of biofilm technology plants is normally based on the use of empirical and semi-empirical methods. However, the advanced control strategies used in the Innovative Nutrient Removal Processes together with the complexity of the mass transfer and biomass growth in biofilms, require the use of modeling tools to be able to set non evident conclusions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El trabajo ha sido realizado dentro del marco de los proyectos EURECA (Enabling information re-Use by linking clinical REsearch and Care) e INTEGRATE (Integrative Cancer Research Through Innovative Biomedical Infrastructures), en los que colabora el Grupo de Informática Biomédica de la UPM junto a otras universidades e instituciones sanitarias europeas. En ambos proyectos se desarrollan servicios e infraestructuras con el objetivo principal de almacenar información clínica, procedente de fuentes diversas (como por ejemplo de historiales clínicos electrónicos de hospitales, de ensayos clínicos o artículos de investigación biomédica), de una forma común y fácilmente accesible y consultable para facilitar al máximo la investigación de estos ámbitos, de manera colaborativa entre instituciones. Esta es la idea principal de la interoperabilidad semántica en la que se concentran ambos proyectos, siendo clave para el correcto funcionamiento del software del que se componen. El intercambio de datos con un modelo de representación compartido, común y sin ambigüedades, en el que cada concepto, término o dato clínico tendrá una única forma de representación. Lo cual permite la inferencia de conocimiento, y encaja perfectamente en el contexto de la investigación médica. En concreto, la herramienta a desarrollar en este trabajo también está orientada a la idea de maximizar la interoperabilidad semántica, pues se ocupa de la carga de información clínica con un formato estandarizado en un modelo común de almacenamiento de datos, implementado en bases de datos relacionales. El trabajo ha sido desarrollado en el periodo comprendido entre el 3 de Febrero y el 6 de Junio de 2014. Se ha seguido un ciclo de vida en cascada para la organización del trabajo realizado en las tareas de las que se compone el proyecto, de modo que una fase no puede iniciarse sin que se haya terminado, revisado y aceptado la fase anterior. Exceptuando la tarea de documentación del trabajo (para la elaboración de esta memoria), que se ha desarrollado paralelamente a todas las demás. ----ABSTRACT--- The project has been developed during the second semester of the 2013/2014 academic year. This Project has been done inside EURECA and INTEGRATE European biomedical research projects, where the GIB (Biomedical Informatics Group) of the UPM works as a partner. Both projects aim is to develop platforms and services with the main goal of storing clinical information (e.g. information from hospital electronic health records (EHRs), clinical trials or research articles) in a common way and easy to access and query, in order to support medical research. The whole software environment of these projects is based on the idea of semantic interoperability, which means the ability of computer systems to exchange data with unambiguous and shared meaning. This idea allows knowledge inference, which fits perfectly in medical research context. The tool to develop in this project is also "semantic operability-oriented". Its purpose is to store standardized clinical information in a common data model, implemented in relational databases. The project has been performed during the period between February 3rd and June 6th, of 2014. It has followed a "Waterfall model" of software development, in which progress is seen as flowing steadily downwards through its phases. Each phase starts when its previous phase has been completed and reviewed. The task of documenting the project‟s work is an exception; it has been performed in a parallel way to the rest of the tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica:  Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool).  Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral.  Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx.  Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema.  Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este discurso de ingreso se destacó la importancia de la Mecánica de Materiales y el Modelado Matemático en Biomedicina y, en particular, se mostraron algunas aportaciones relacionadas con el comportamiento funcional de tejidos biológicos. Más en concreto se discutió la importancia de la transdisciplinariedad en la investigación actual y el papel que en esa búsqueda de un lenguaje común entre disciplinas tienen el modelado matemático y la simulación computacional.En particular, en la nueva Biomedicina basada en la evidencia, la interacción transdisciplinar es esencial, como lo demuestran resultados tan evidentes como los dispositivos e implantes inteligentes, las nuevas técnicas de imagen médica, la aparición de órganos artificiales o las crecientemente importantes técnicas de Ingeniería Tisular y Terapias Génica y Celular. Uno de los aspectos de creciente estudio en los últimos años es la epigenética, es decir, el estudio de la influencia del entorno específico de cada individuo en su respuesta biológica. Uno de estos estímulos externos, que se está constatando como fundamental, corresponde a las deformaciones, y ello en todas las escalas: molecular, celular, tisular y orgánica, dando lugar a una nueva subdisciplina: la Mecanobiología de creciente interés. En ella se acoplan los fenómenos mecánicos (movimiento, deformaciones, tensiones,..) con los biológicos (respuesta celular, expresión génica, adaptación tisular, regeneración y morfogénesis orgánica, etc.) y, en general, con otros campos físicos como la bioquímica o la electricidad también acoplados en los procesos de señalización y expresión celular. De nuevo el modelado multiescala y multifísico de estos problemas es esencial en su comprensión última y en el diseño de nuevas estrategias quirúrgicas, terapéuticas o de diagnostico. En este discurso se mostraron los problemas y posibilidades de estas metodologías y su aplicación en problemas tales como el diseño de implantes, la remodelación reparación y morfogénesis óseas, así como en la planificación preoperatoria y cirugía virtual.