4 resultados para Investigación enfermería clínica

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

RESUMEN Las enfermedades cardiovasculares constituyen en la actualidad la principal causa de mortalidad en el mundo y se prevé que sigan siéndolo en un futuro, generando además elevados costes para los sistemas de salud. Los dispositivos cardiacos implantables constituyen una de las opciones para el diagnóstico y el tratamiento de las alteraciones del ritmo cardiaco. La investigación clínica con estos dispositivos alcanza gran relevancia para combatir estas enfermedades que tanto afectan a nuestra sociedad. Tanto la industria farmacéutica y de tecnología médica, como los propios investigadores, cada día se ven involucrados en un mayor número de proyectos de investigación clínica. No sólo el incremento en su volumen, sino el aumento de la complejidad, están generando mayores gastos en las actividades asociadas a la investigación médica. Esto está conduciendo a las compañías del sector sanitario a estudiar nuevas soluciones que les permitan reducir los costes de los estudios clínicos. Las Tecnologías de la Información y las Comunicaciones han facilitado la investigación clínica, especialmente en la última década. Los sistemas y aplicaciones electrónicos han proporcionado nuevas posibilidades en la adquisición, procesamiento y análisis de los datos. Por otro lado, la tecnología web propició la aparición de los primeros sistemas electrónicos de adquisición de datos, que han ido evolucionando a lo largo de los últimos años. Sin embargo, la mejora y perfeccionamiento de estos sistemas sigue siendo crucial para el progreso de la investigación clínica. En otro orden de cosas, la forma tradicional de realizar los estudios clínicos con dispositivos cardiacos implantables precisaba mejorar el tratamiento de los datos almacenados por estos dispositivos, así como para su fusión con los datos clínicos recopilados por investigadores y pacientes. La justificación de este trabajo de investigación se basa en la necesidad de mejorar la eficiencia en la investigación clínica con dispositivos cardiacos implantables, mediante la reducción de costes y tiempos de desarrollo de los proyectos, y el incremento de la calidad de los datos recopilados y el diseño de soluciones que permitan obtener un mayor rendimiento de los datos mediante la fusión de datos de distintas fuentes o estudios. Con este fin se proponen como objetivos específicos de este proyecto de investigación dos nuevos modelos: - Un modelo de recuperación y procesamiento de datos para los estudios clínicos con dispositivos cardiacos implantables, que permita estructurar y estandarizar estos procedimientos, con el fin de reducir tiempos de desarrollo Modelos de Métrica para Sistemas Electrónicos de Adquisición de Datos y de Procesamiento para Investigación Clínica con Dispositivos Cardiacos Implantables de estas tareas, mejorar la calidad del resultado obtenido, disminuyendo en consecuencia los costes. - Un modelo de métrica integrado en un Sistema Electrónico de Adquisición de Datos (EDC) que permita analizar los resultados del proyecto de investigación y, particularmente del rendimiento obtenido del EDC, con el fin de perfeccionar estos sistemas y reducir tiempos y costes de desarrollo del proyecto y mejorar la calidad de los datos clínicos recopilados. Como resultado de esta investigación, el modelo de procesamiento propuesto ha permitido reducir el tiempo medio de procesamiento de los datos en más de un 90%, los costes derivados del mismo en más de un 85% y todo ello, gracias a la automatización de la extracción y almacenamiento de los datos, consiguiendo una mejora de la calidad de los mismos. Por otro lado, el modelo de métrica posibilita el análisis descriptivo detallado de distintos indicadores que caracterizan el rendimiento del proyecto de investigación clínica, haciendo factible además la comparación entre distintos estudios. La conclusión de esta tesis doctoral es que los resultados obtenidos han demostrado que la utilización en estudios clínicos reales de los dos modelos desarrollados ha conducido a una mejora en la eficiencia de los proyectos, reduciendo los costes globales de los mismos, disminuyendo los tiempos de ejecución, e incrementando la calidad de los datos recopilados. Las principales aportaciones de este trabajo de investigación al conocimiento científico son la implementación de un sistema de procesamiento inteligente de los datos almacenados por los dispositivos cardiacos implantables, la integración en el mismo de una base de datos global y optimizada para todos los modelos de dispositivos, la generación automatizada de un repositorio unificado de datos clínicos y datos de dispositivos cardiacos implantables, y el diseño de una métrica aplicada e integrable en los sistemas electrónicos de adquisición de datos para el análisis de resultados de rendimiento de los proyectos de investigación clínica. ABSTRACT Cardiovascular diseases are the main cause of death worldwide and it is expected to continue in the future, generating high costs for health care systems. Implantable cardiac devices have become one of the options for diagnosis and treatment of cardiac rhythm disorders. Clinical research with these devices has acquired great importance to fight against these diseases that affect so many people in our society. Both pharmaceutical and medical technology companies, and also investigators, are involved in an increasingly number of clinical research projects. The growth in volume and the increase in medical research complexity are contributing to raise the expenditure level associated with clinical investigation. This situation is driving health care sector companies to explore new solutions to reduce clinical trial costs. Information and Communication Technologies have facilitated clinical research, mainly in the last decade. Electronic systems and software applications have provided new possibilities in the acquisition, processing and analysis of clinical studies data. On the other hand, web technology contributed to the appearance of the first electronic data capture systems that have evolved during the last years. Nevertheless, improvement of these systems is still a key aspect for the progress of clinical research. On a different matter, the traditional way to develop clinical studies with implantable cardiac devices needed an improvement in the processing of the data stored by these devices, and also in the merging of these data with the data collected by investigators and patients. The rationale of this research is based on the need to improve the efficiency in clinical investigation with implantable cardiac devices, by means of reduction in costs and time of projects development, as well as improvement in the quality of information obtained from the studies and to obtain better performance of data through the merging of data from different sources or trials. The objective of this research project is to develop the next two models: • A model for the retrieval and processing of data for clinical studies with implantable cardiac devices, enabling structure and standardization of these procedures, in order to reduce the time of development of these tasks, to improve the quality of the results, diminish therefore costs. • A model of metric integrated in an Electronic Data Capture system (EDC) that allow to analyze the results of the research project, and particularly the EDC performance, in order to improve those systems and to reduce time and costs of the project, and to get a better quality of the collected clinical data. As a result of this work, the proposed processing model has led to a reduction of the average time for data processing by more than 90 per cent, of related costs by more than 85 per cent, and all of this, through automatic data retrieval and storage, achieving an improvement of quality of data. On the other hand, the model of metrics makes possible a detailed descriptive analysis of a set of indicators that characterize the performance of each research project, allowing inter‐studies comparison. This doctoral thesis results have demonstrated that the application of the two developed models in real clinical trials has led to an improvement in projects efficiency, reducing global costs, diminishing time in execution, and increasing quality of data collected. The main contributions to scientific knowledge of this research work are the implementation of an intelligent processing system for data stored by implantable cardiac devices, the integration in this system of a global and optimized database for all models of devices, the automatic creation of an unified repository of clinical data and data stored by medical devices, and the design of a metric to be applied and integrated in electronic data capture systems to analyze the performance results of clinical research projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante la última década la investigación en nanomedicina ha generado gran cantidad de datos, heterogéneos, distribuidos en múltiples fuentes de información. El uso de las Tecnologías de la Información y la Comunicación (TIC) puede facilitar la investigación médica a escala nanométrica, proporcionando mecanismos y herramientas que permitan gestionar todos esos datos de una manera inteligente. Mientras que la informática biomédica comprende el procesamiento y gestión de la información generada desde el nivel de salud pública y aplicación clínica hasta el nivel molecular, la nanoinformática extiende este ámbito para incluir el “nivel nano”, ocupándose de gestionar y analizar los resultados generados durante la investigación en nanomedicina y desarrollar nuevas líneas de trabajo en este espacio interdisciplinar. En esta nueva área científica, la nanoinformática (que podría consolidarse como una auténtica disciplina en los próximos años), elGrupo de Informática Biomédica (GIB) de la Universidad Politécnica de Madrid (UPM) participa en numerosas iniciativas, que se detallan a continuación.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Diabetes Mellitus se define como el trastorno del metabolismo de los carbohidratos, resultante de una producción insuficiente o nula de insulina en las células beta del páncreas, o la manifestación de una sensibilidad reducida a la insulina por parte del sistema metabólico. La diabetes tipo 1 se caracteriza por la nula producción de insulina por la destrucción de las células beta del páncreas. Si no hay insulina en el torrente sanguíneo, la glucosa no puede ser absorbida por las células, produciéndose un estado de hiperglucemia en el paciente, que a medio y largo plazo si no es tratado puede ocasionar severas enfermedades, conocidos como síndromes de la diabetes. La diabetes tipo 1 es una enfermedad incurable pero controlable. La terapia para esta enfermedad consiste en la aplicación exógena de insulina con el objetivo de mantener el nivel de glucosa en sangre dentro de los límites normales. Dentro de las múltiples formas de aplicación de la insulina, en este proyecto se usará una bomba de infusión, que unida a un sensor subcutáneo de glucosa permitirá crear un lazo de control autónomo que regule la cantidad optima de insulina aplicada en cada momento. Cuando el algoritmo de control se utiliza en un sistema digital, junto con el sensor subcutáneo y bomba de infusión subcutánea, se conoce como páncreas artificial endocrino (PAE) de uso ambulatorio, hoy día todavía en fase de investigación. Estos algoritmos de control metabólico deben de ser evaluados en simulación para asegurar la integridad física de los pacientes, por lo que es necesario diseñar un sistema de simulación mediante el cual asegure la fiabilidad del PAE. Este sistema de simulación conecta los algoritmos con modelos metabólicos matemáticos para obtener una visión previa de su funcionamiento. En este escenario se diseñó DIABSIM, una herramienta desarrollada en LabViewTM, que posteriormente se trasladó a MATLABTM, y basada en el modelo matemático compartimental propuesto por Hovorka, con la que poder simular y evaluar distintos tipos de terapias y reguladores en lazo cerrado. Para comprobar que estas terapias y reguladores funcionan, una vez simulados y evaluados, se tiene que pasar a la experimentación real a través de un protocolo de ensayo clínico real, como paso previo al PEA ambulatorio. Para poder gestionar este protocolo de ensayo clínico real para la verificación de los algoritmos de control, se creó una interfaz de usuario a través de una serie de funciones de simulación y evaluación de terapias con insulina realizadas con MATLABTM (GUI: Graphics User Interface), conocido como Entorno de Páncreas artificial con Interfaz Clínica (EPIC). EPIC ha sido ya utilizada en 10 ensayos clínicos de los que se han ido proponiendo posibles mejoras, ampliaciones y/o cambios. Este proyecto propone una versión mejorada de la interfaz de usuario EPIC propuesta en un proyecto anterior para gestionar un protocolo de ensayo clínico real para la verificación de algoritmos de control en un ambiente hospitalario muy controlado, además de estudiar la viabilidad de conectar el GUI con SimulinkTM (entorno gráfico de Matlab de simulación de sistemas) para su conexión con un nuevo simulador de pacientes aprobado por la JDRF (Juvenil Diabetes Research Foundation). SUMMARY The diabetes mellitus is a metabolic disorder of carbohydrates, as result of an insufficient or null production of insulin in the beta cellules of pancreas, or the manifestation of a reduced sensibility to the insulin from the metabolic system. The type 1 diabetes is characterized for a null production of insulin due to destruction of the beta cellules. Without insulin in the bloodstream, glucose can’t be absorbed by the cellules, producing a hyperglycemia state in the patient and if pass a medium or long time and is not treated can cause severe disease like diabetes syndrome. The type 1 diabetes is an incurable disease but controllable one. The therapy for this disease consists on the exogenous insulin administration with the objective to maintain the glucose level in blood within the normal limits. For the insulin administration, in this project is used an infusion pump, that permit with a subcutaneous glucose sensor, create an autonomous control loop that regulate the optimal insulin amount apply in each moment. When the control algorithm is used in a digital system, with the subcutaneous senor and infusion subcutaneous pump, is named as “Artificial Endocrine Pancreas” for ambulatory use, currently under investigate. These metabolic control algorithms should be evaluates in simulation for assure patients’ physical integrity, for this reason is necessary to design a simulation system that assure the reliability of PAE. This simulation system connects algorithms with metabolic mathematics models for get a previous vision of its performance. In this scenario was created DIABSIMTM, a tool developed in LabView, that later was converted to MATLABTM, and based in the compartmental mathematic model proposed by Hovorka that could simulate and evaluate several different types of therapy and regulators in closed loop. To check the performance of these therapies and regulators, when have been simulated and evaluated, will be necessary to pass to real experimentation through a protocol of real clinical test like previous step to ambulatory PEA. To manage this protocol was created an user interface through the simulation and evaluation functions od therapies with insulin realized with MATLABTM (GUI: Graphics User Interface), known as “Entorno de Páncreas artificial con Interfaz Clínica” (EPIC).EPIC have been used in 10 clinical tests which have been proposed improvements, adds and changes. This project proposes a best version of user interface EPIC proposed in another project for manage a real test clinical protocol for checking control algorithms in a controlled hospital environment and besides studying viability to connect the GUI with SimulinkTM (Matlab graphical environment in systems simulation) for its connection with a new patients simulator approved for the JDRF (Juvenil Diabetes Research Foundation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis doctoral propone un modelo de comportamiento del paciente de la clínica dental, basado en la percepción de la calidad del servicio (SERVQUAL), la fidelización del paciente, acciones de Marketing Relacional y aspectos socioeconómicos relevantes, de los pacientes de clínicas dentales. En particular, el estudio de campo se lleva a cabo en el ámbito geográfico de la Comunidad de Madrid, España, durante los años 2012 y 2013. La primera parte del proceso de elaboración del modelo está basada en la recolección de datos. Para ello, se realizaron cinco entrevistas a expertos dentistas y se aplicaron dos tipos encuestas diferentes: una para el universo formado por el conjunto de los pacientes de las clínicas dentales y la otra para el universo formado el conjunto de los dentistas de las clínicas dentales de la Comunidad de Madrid. Se obtuvo muestras de: 200 encuestas de pacientes y 220 encuestas de dentistas activos colegiados en el Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. En la segunda parte de la elaboración del modelo, se realizó el análisis de los datos, la inducción y síntesis del modelo propuesto. Se utilizó la metodología de modelos gráficos probabilísticos, específicamente, una Red Bayesiana, donde se integraron variables (nodos) y sus dependencias estadísticas causales (arcos dirigidos), que representan el conocimiento obtenido de los datos recopilados en las encuestas y el conocimiento derivado de investigaciones precedentes en el área. Se obtuvo una Red Bayesiana compuesta por 6 nodos principales, de los cuales dos de ellos son nodos de observación directa: “Revisit Intention” y “SERVQUAL”, y los otros cuatro nodos restantes son submodelos (agrupaciones de variables), estos son respectivamente: “Attitudinal”, “Disease Information”, “Socioeconomical” y “Services”. Entre las conclusiones principales derivadas del uso del modelo, como herramientas de inferencia y los análisis de las entrevistas realizadas se obtiene que: (i) las variables del nodo “Attitudinal” (submodelo), son las más sensibles y significativas. Al realizarse imputaciones particulares en las variables que conforman el nodo “Attitudinal” (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”) se obtienen altas probabilidades a posteriori en la fidelidad del paciente de la clínica dental, medida por su intención de revisita. (ii) En el nodo “Disease Information” (submodelo) se destaca la relación de dependencia causal cuando se imputa la variable “Perception of disease” en “SERVQUAL”, demostrando que la percepción de la gravedad del paciente condiciona significativamente la percepción de la calidad del servicio del paciente. Como ejemplo destacado, si se realiza una imputación en la variable “Clinic_Type” se obtienen altas probabilidades a posteriori de las variables “SERVQUAL” y “Revisit Intention”, lo que evidencia, que el tipo de clínica dental influye significativamente en la percepción de la calidad del servicio y en la fidelidad del paciente (intención de revisita). (iii) En el nodo “Socioeconomical” (submodelo) la variable “Sex” resultó no ser significativa cuando se le imputaban diferentes valores, por el contrario, la variable “Age” e “Income” mostraban altas variabilidades en las probabilidades a posteriori cuando se imputaba alguna variable del submodelo “Services”, lo que evidencia, que estas variables condicionan la intención de contratar servicios (“Services”), sobretodo en las franjas de edad de 30 a 51 años en pacientes con ingresos entre 3000€ y 4000€. (iv) En el nodo “Services” (submodelo) los pacientes de las clínicas dentales mostraron altas probabilidades a priori para contratar servicios de fisiotrapia oral y gingival: “Dental Health Education” y “Parking”. (v) Las variables de fidelidad del paciente medidas desde su perspectiva comportamental que fueron utilizadas en el modelo: “Visit/year” “Time_clinic”, no aportaron información significativa. Tampoco, la variable de fidelidad del cliente (actitudinal): “Churn Efford”. (vi) De las entrevistas realizadas a expertos dentistas se obtiene que, los propietarios de la clínica tradicional tienen poca disposición a implementar nuevas estrategias comerciales, debido a la falta de formación en la gestión comercial y por falta de recursos y herramientas. Existe un rechazo generalizado hacia los nuevos modelos de negocios de clínicas dentales, especialmente en las franquicias y en lo que a políticas comerciales se refiere. Esto evidencia una carencia de gerencia empresarial en el sector. Como líneas futuras de investigación, se propone profundizar en algunas relaciones de dependencia (causales) como SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, entre otras. Así como, otras variables de medición de la fidelidad comportamental que contribuyan a la mejora del modelo, como por ej. Gasto del paciente y rentabilidad de la visita. ABSTRACT This doctoral dissertation proposes a model of the behavior of the dental-clinic customer, based on the service-quality perception (SERVQUAL), loyalty, Relational Marketing and some relevant socio-economical characteristics, of the dental-clinic customers. In particular, the field study has been developed in the geographical region of Madrid, Spain during the years 2012 and 2013. The first stage of the preparation of the model consist in the data gathering process. For this purpose, five interviews where realized to expert dentists and also two different types of surveys: one for the universe defined by the set of dental-clinic patients and the second for the universe defined by the set of the dentists of the dental clinics of the Madrid Community. A sample of 200 surveys where collected for patients and a sample of 220 surveys where collected from active dentists belonging to the Ilustre Colegio Oficial de Odontólogos y Estomatólogos de la I Región Madrid. In the second stage of the model preparation, the processes of data-analysis, induction and synthesis of the final model where performed. The Graphic Probabilistic Models methodology was used to elaborate the final model, specifically, a Bayesian Network, where the variables (nodes) and their statistical and causal dependencies where integrated and modeled, representing thus, the obtained knowledge from the data obtained by the surveys and the scientific knowledge derived from previous research in the field. A Bayesian Net consisting on six principal nodes was obtained, of which two of them are directly observable: “Revisit Intention” y “SERVQUAL”, and the remaining four are submodels (a grouping of variables). These are: “Attitudinal”, “Disease Information”, “Socioeconomical” and “Services”. The main conclusions derived from the model, as an inference tool, and the analysis of the interviews are: (i) the variables inside the “Attitudinal” node are the most sensitive and significant. By making some particular imputations on the variables that conform the “Attitudinal” node (“RelationalMk”, “Satisfaction”, “Recommendation” y “Friendship”), high posterior probabilities (measured in revisit intention) are obtained for the loyalty of the dental-clinic patient. (ii) In the “Disease Information” node, the causal relation between the “Perception of disease” and “SERVQUAL” when “Perception of disease” is imputed is highlighted, showing that the perception of the severity of the patient’s disease conditions significantly the perception of service quality. As an example, by imputing some particular values to the “Clinic_Type” node high posterior probabilities are obtained for the “SERVQUAL” variables and for “Revisit Intention” showing that the clinic type influences significantly in the service quality perception and loyalty (revisit intention). (iii) In the “Socioeconomical” variable, the variable “Sex” showed to be non-significant, however, the “Age” variable and “Income” show high variability in its posterior probabilities when some variable from the “Services” node where imputed, showing thus, that these variables condition the intention to buy new services (“Services”), especially in the age range from 30 to 50 years in patients with incomes between 3000€ and 4000€. (iv) In the “Services” submodel the dental-clinic patients show high priors to buy services such as oral and gingival therapy, Dental Health Education and “Parking” service. (v) The obtained loyalty measures, from the behavioral perspective, “Visit/year” and “Time_clinic”, do not add significant information to the model. Neither the attitudinal loyalty component “Churn Efford”. (vi) From the interviews realized to the expert dentists it is observed that the owners of the traditional clinics have a low propensity to apply new commercial strategies due to a lack of resources and tools. In general, there exists an opposition to new business models in the sector, especially to the franchise dental model. All of this evidences a lack in business management in the sector. As future lines of research, a deep look into some statistical and causal relations is proposed, such as: SERVQUALServices; SatisfactionServices; RelationalMKServices, Perception of diseaseSatisfaction, as well as new measurement variables related to attitudinal loyalty that contribute to improve the model, for example, profit per patient and per visit.