13 resultados para Invariant polynomials
em Universidad Politécnica de Madrid
Resumo:
Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.
Resumo:
Although context could be exploited to improve the performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) model of communication, only very few works have explored domains with highly dynamic context, whereas most adopted models are context agnostic. In this paper, we present the key design principles underlying a novel context-aware content-based P/S (CA-CBPS) model of communication, where the context is explicitly managed, focusing on the minimization of network overhead in domains with recurrent context changes thanks to contextual scoping. We highlight how we dealt with the main shortcomings of most of the current approaches. Our research is some of the first to study the problem of explicitly introducing context-awareness into the P/S model to capitalize on contextual information. The envisioned CA-CBPS middleware enables the cloud ecosystem of services to communicate very efficiently, in a decoupled, but contextually scoped fashion.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant bandlimited Airy pulses with an arbitrary degree of robustness and an arbitrary range of single-mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.
Resumo:
Ponencia
Resumo:
This paper concerns the characterization as frames of some sequences in U-invariant spaces of a separable Hilbert space H where U denotes an unitary operator defined on H ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces in L2 (R), where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In so doing, we need that the unitary operator U belongs to a continuous group of unitary operators.
Resumo:
In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space H, also called atomic subspaces. These spaces are a generalization of the well-known shift- invariant subspaces in L2 (R); here the space L2 (R) is replaced by H, and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in Aa. Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.
Resumo:
The sparse differential resultant dres(P) of an overdetermined system P of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula dfres(P) is defined and proved to be nonzero for linear "super essential" systems. In the linear case, dres(P) is proved to be equal, up to a nonzero constant, to dfres(P*) for the supper essential subsystem P* of P.
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.
Resumo:
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.
Resumo:
In this paper we present a recurrent procedure to solve an inversion problem for monic bivariate Krawtchouk polynomials written in vector column form, giving its solution explicitly. As a by-product, a general connection problem between two vector column of monic bivariate Krawtchouk families is also explicitly solved. Moreover, in the non monic case and also for Krawtchouk families, several expansion formulas are given, but for polynomials written in scalar form.