25 resultados para Interval signals and systems
em Universidad Politécnica de Madrid
Resumo:
Higher education students demand fast feedback about their assignments and the opportunity to repeat them in case they do in a wrong way. Here a computer based trainer for Signals and Systems students is presented. An application, that automatically generates and assesses thousands of numerically different versions of several Signals and Systems problems have been developed. This applet guides the students to find the solution and automatically assesses and grades the students proposed solution. The students can use the application to practice in solving several types of Signals and Systems basic problems. After selecting the problem type, the student introduces a seed and the application generates a numerical version of the selected problem. Then the application presents a sequence of questions that the students must solve and the application automatically assess their answers. After solving a given problem, the students can repeat the same numerical variation of the problem by introducing the same seed to the application. In this way, they can review their solution with the help of the hints given by the application for wrong solutions. This application can also be used as an automatic assessment tool by the instructor. When the assessment is made in a controlled environment (examination classroom or laboratory) the instructor can use the same seed for all students. Otherwise, different seeds can be assigned to different students and in this way they solve different numerical variation of the proposed problem, so cheating becomes an arduous task. Given a problem type, the mathematical or conceptual difficulty of the problem can vary depending on the numerical values of the parameters of the problem. The application permits to easily select groups of seeds that yield to numerical variations with similar mathematical or conceptual difficulty. This represents an advantage over a randomised task assignment where students are asked to solve tasks with different difficulty.
Resumo:
A stress-detection system is proposed based on physiological signals. Concretely, galvanic skin response (GSR) and heart rate (HR) are proposed to provide information on the state of mind of an individual, due to their nonintrusiveness and noninvasiveness. Furthermore, specific psychological experiments were designed to induce properly stress on individuals in order to acquire a database for training, validating, and testing the proposed system. Such system is based on fuzzy logic, and it described the behavior of an individual under stressing stimuli in terms of HR and GSR. The stress-detection accuracy obtained is 99.5% by acquiring HR and GSR during a period of 10 s, and what is more, rates over 90% of success are achieved by decreasing that acquisition period to 3-5 s. Finally, this paper comes up with a proposal that an accurate stress detection only requires two physiological signals, namely, HR and GSR, and the fact that the proposed stress-detection system is suitable for real-time applications.
Resumo:
An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50–100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.
Resumo:
This work introduces the lines of research that the NGCPV project is pursuing and some of the first results obtained. Sponsored by the European Commission under the 7th Framework Program and NEDO (Japan) within the first collaborative call launched by both Bodies in the field of energy, NGCPV project aims at approaching the cost of the photovoltaic kWh to competitive prices in the framework of high concentration photovoltaics (CPV) by exploring the development and assessment of concentrator photovoltaic solar cells and modules, novel materials and new solar cell structures as well as methods and procedures to standardize measurement technology for concentrator photovoltaic cells and modules. More specific objectives we are facing are: (1) to manufacture a cell prototype with an efficiency of at least 45% and to undertake an experimental activity, (2) to manufacture a 35% module prototype and elaborate the roadmap towards the achievement of 40%, (3) to develop reliable characterization techniques for III-V materials and quantum structures, (4) to achieve and agreement within 5% in the characterization of CPV cells and modules in a round robin scheme, and (5) to evaluate the potential of new materials, devices technologies and quantum nanostructures to improve the efficiency of solar cells for CPV.
Resumo:
Starting on June 2011, NGCPV is the first project funded jointly between the European Commission (EC) and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to research on new generation concentration photovoltaics (CPV). The Project, through a collaborative research between seven European and nine Japanese leading research centers in the field of CPV, aims at lowering the cost of the CPVproduced photovoltaic kWh down to 5 ?cents. The main objective of the project is to improve the present concentrator cell, module and system efficiency, as well as developing advanced characterization tools for CPV components and systems. As particular targets, the project aims at achieving a cell efficiency of at least 45% and a CPV module with an efficiency greater than 35%. This paper describes the R&D activities that are being carried out within the NGCPV project and summarizes some of the most relevant results that have already been attained, for instance: the manufacturing of a 44.4% world record efficiency triple junction solar cell (by Sharp Corp.) and the installation of a 50 kWp experimental CPV plant in Spain, which will be used to obtain accurate forecasts of the energy produced at system level.
Resumo:
Nunca hemos entendido el proyecto de arquitectura como una colección de pianos más o menos bien estructurados. Proyectar es despejar incógnitas y por tanto caminar por sendas aparentemente vacías de rastros. Proyectar es perderse para entender no tanto el camino sino fundamentalmente el territorio que se recorre.
Resumo:
In this paper we apply the formalism of the analytical signal theory to the Schrödinger wavefunction. Making use exclusively of the wave-particle duality and the rinciple of relativistic covariance, we actually derive the form of the quantum energy and momentum operators for a single nonrelativistic particle. Without using any more quantum postulates, and employing the formalism of the characteristic function, we also derive the quantum-mechanical prescription for the measurement probability in such cases.
Resumo:
All around the ITER vacuum vessel, forty-four ports will provide access to the vacuum vessel for remotehandling operations, diagnostic systems, heating, and vacuum systems: 18 upper ports, 17 equatorialports, and 9 lower ports. Among the lower ports, three of them will be used for the remote handlinginstallation of the ITER divertor. Once the divertor is in place, these ports will host various diagnosticsystems mounted in the so-called diagnostic racks. The diagnostic racks must allow the support andcooling of the diagnostics, extraction of the required diagnostic signals, and providing access and main-tainability while minimizing the leakage of radiation toward the back of the port where the humans areallowed to enter. A fully integrated inner rack, carrying the near plasma diagnostic components, will bean stainless steel structure, 4.2 m long, with a maximum weight of 10 t. This structure brings water forcooling and baking at maximum temperature of 240?C and provides connection with gas, vacuum andelectric services. Additional racks (placed away from plasma and not requiring cooling) may be requiredfor the support of some particular diagnostic components. The diagnostics racks and its associated exvessel structures, which are in its conceptual design phase, are being designed to survive the lifetimeof ITER of 20 years. This paper presents the current state of development including interfaces, diagnos-tic integration, operation and maintenance, shielding requirements, remote handling, loads cases anddiscussion of the main challenges coming from the severe environment and engineering requirements.
Resumo:
The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.
Resumo:
The concept of smartness of energy efficient products and systems from a business perspective has been investigated by several authors. The problem of understanding, designing, engineering and governing these technologies requires new concepts. The emergence of these modern technologies causes a myriad of interconnected systems, which are working together to satisfy the necessities of modern life. The problem of understanding, designing, engineering, and governing these technologies requires new concepts. Development of System of System Engineering (SoSE) is an attempt by the systems engineering and science community to fulfill this requirement.
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
Modern FPGAs with Dynamic and Partial Reconfiguration (DPR) feature allow the implementation of complex, yet flexible, hardware systems. Combining this flexibility with evolvable hardware techniques, real adaptive systems, able to reconfigure themselves according to environmental changes, can be envisaged. In this paper, a highly regular and modular architecture combined with a fast reconfiguration mechanism is proposed, allowing the introduction of dynamic and partial reconfiguration in the evolvable hardware loop. Results and use case show that, following this approach, evolvable processing IP Cores can be built, providing intensive data processing capabilities, improving data and delay overheads with respect to previous proposals. Results also show that, in the worst case (maximum mutation rate), average reconfiguration time is 5 times lower than evaluation time.
Resumo:
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.
Resumo:
Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families.