5 resultados para Interpreters
em Universidad Politécnica de Madrid
Resumo:
Program specialization optimizes programs for known valúes of the input. It is often the case that the set of possible input valúes is unknown, or this set is infinite. However, a form of specialization can still be performed in such cases by means of abstract interpretation, specialization then being with respect to abstract valúes (substitutions), rather than concrete ones. We study the múltiple specialization of logic programs based on abstract interpretation. This involves in principie, and based on information from global analysis, generating several versions of a program predicate for different uses of such predicate, optimizing these versions, and, finally, producing a new, "multiply specialized" program. While múltiple specialization has received theoretical attention, little previous evidence exists on its practicality. In this paper we report on the incorporation of múltiple specialization in a parallelizing compiler and quantify its effects. A novel approach to the design and implementation of the specialization system is proposed. The resulting implementation techniques result in identical specializations to those of the best previously proposed techniques but require little or no modification of some existing abstract interpreters. Our results show that, using the proposed techniques, the resulting "abstract múltiple specialization" is indeed a relevant technique in practice. In particular, in the parallelizing compiler application, a good number of run-time tests are eliminated and invariants extracted automatically from loops, resulting generally in lower overheads and in several cases in increased speedups.
Resumo:
Information generated by abstract interpreters has long been used to perform program specialization. Additionally, if the abstract interpreter generates a multivariant analysis, it is also possible to perform múltiple specialization. Information about valúes of variables is propagated by simulating program execution and performing fixpoint computations for recursive calis. In contrast, traditional partial evaluators (mainly) use unfolding for both propagating valúes of variables and transforming the program. It is known that abstract interpretation is a better technique for propagating success valúes than unfolding. However, the program transformations induced by unfolding may lead to important optimizations which are not directly achievable in the existing frameworks for múltiple specialization based on abstract interpretation. The aim of this work is to devise a specialization framework which integrates the better information propagation of abstract interpretation with the powerful program transformations performed by partial evaluation, and which can be implemented via small modifications to existing generic abstract interpreters. With this aim, we will relate top-down abstract interpretation with traditional concepts in partial evaluation and sketch how the sophisticated techniques developed for controlling partial evaluation can be adapted to the proposed specialization framework. We conclude that there can be both practical and conceptual advantages in the proposed integration of partial evaluation and abstract interpretation.
Resumo:
Abstract interpreters rely on the existence of a nxpoint algorithm that calculates a least upper bound approximation of the semantics of the program. Usually, that algorithm is described in terms of the particular language in study and therefore it is not directly applicable to programs written in a different source language. In this paper we introduce a generic, block-based, and uniform representation of the program control flow graph and a language-independent nxpoint algorithm that can be applied to a variety of languages and, in particular, Java. Two major characteristics of our approach are accuracy (obtained through a topdown, context sensitive approach) and reasonable efficiency (achieved by means of memoization and dependency tracking techniques). We have also implemented the proposed framework and show some initial experimental results for standard benchmarks, which further support the feasibility of the solution adopted.
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.
Resumo:
This paper presents improved unification algorithms, an implementation, and an analysis of the effectiveness of an abstract interpreter based on the sharing + freeness domain presented in a previous paper, which was designed to accurately and concisely represent combined freeness and sharing information for program variables. We first briefly review this domain and the unification algorithms previously proposed. We then improve these algorithms and correct them to deal with some cases which were not well analyzed previously, illustrating the improvement with an example. We then present the implementation of the improved algorithm and evaluate its performance by comparing the effectiveness of the information inferred to that of other interpreters available to us for an application (program parallelization) that is common to all these interpreters. All these systems have been embedded in a real parallelizing compiler. Effectiveness of the analysis is measured in terms of actual final performance of the system: i.e. in terms of the actual speedups obtained. The results show good performance for the combined domain in that it improves the accuracy of both types of information and also in that the analyzer using the combined domain is more effective in the application than any of the other analyzers it is compared to.