21 resultados para Interchange

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an abstract syntax for Prolog that will help the manipulation of programs at compile-time, as well as the exchange of sources and information among the tools designed for this manipulation. This includes analysers, partial evaluators, and program transformation tools. We have chosen to concentrate on the information exchange format, rather than on the syntax of programs, for which we assume a simplified format. Our purpose is to provide a low-level meeting point for the tools which will allow them to read the same programs and understand the information about them. This report describes our first design in an informal way. We expect this design to evolve and concretize, along with the future development of the tools, during the project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RDF streams are sequences of timestamped RDF statements or graphs, which can be generated by several types of data sources (sensors, social networks, etc.). They may provide data at high volumes and rates, and be consumed by applications that require real-time responses. Hence it is important to publish and interchange them efficiently. In this paper, we exploit a key feature of RDF data streams, which is the regularity of their structure and data values, proposing a compressed, efficient RDF interchange (ERI) format, which can reduce the amount of data transmitted when processing RDF streams. Our experimental evaluation shows that our format produces state-of-the-art streaming compression, remaining efficient in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the different interchange design aspects, integrated land use and infrastructure planning is maybe one of the most problematic fields in practice, given that a joint transport and urban planning spills over the regular scope of action of interchange developers, whereas it involves the cooperation and agreement of various authorities. Not only this, but the very issue of land use-transport integration seems to be a long-standing mantra in planning and transport research, lacking scientific evidence. This paper is an output of an ongoing European research project called ?NODES - New tOols for Design and OpEration of Urban Transport InterchangeS?. Its aim is to start re-focusing the academic-scientific evidence on the question and to foresee a specific and practical framework to approach the problem. The underlying hypothesis is that the interchange could be a catalyst of life and security in the city.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Singlet oxygen is a prominent form of reactive oxygen species in higher plants. It is easily formed from molecular oxygen by triplet–triplet interchange with excited porphyrin species. Evidence has been obtained from studies on the flu mutant of Arabidopsis thaliana of a genetically determined cell death pathway that involves differential changes at the transcriptome level. Here we report on a different cell death pathway that can be deduced from the analysis of oep16 mutants of A. thaliana. Pure lines of four independent OEP16-deficient mutants with different cell death properties were isolated. Two of the mutants overproduced free protochlorophyllide (Pchlide) in the dark because of defects in import of NADPH:Pchlide oxidoreductase A (pPORA) and died after illumination. The other two mutants avoided excess Pchlide accumulation. Using pulse labeling and polysome profiling studies we show that translation is a major site of cell death regulation in flu and oep16 plants. flu plants respond to photooxidative stress triggered by singlet oxygen by reprogramming their translation toward synthesis of key enzymes involved in jasmonic acid synthesis and stress proteins. In contrast, those oep16 mutants that were prone to photooxidative damage were unable to respond in this way. Together, our results show that translation is differentially affected in the flu and oep16 mutants in response to singlet oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definition of an agent architecture at the knowledge level makes emphasis on the knowledge role played by the data interchanged between the agent components and makes explicit this data interchange this makes easier the reuse of these knowledge structures independently of the implementation This article defines a generic task model of an agent architecture and refines some of these tasks using the interference diagrams. Finally, a operationalisation of this conceptual model using the rule-oriented language Jess is shown. knowledge level,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interoperability between semantic technologies is a must because they need to be in communication to interchange ontologies and use them in the distributed and open environment of the SemanticWeb. However, such interoperability is not straightforward due to the high heterogeneity in such technologies. This chapter describes the problem of semantic technology interoperability from two different perspectives. First, from a theoretical perspective by presenting an overview of the different factors that affect interoperability and, second, from a practical perspective by reusing evaluation methods and applying them to six current semantic technologies in order to assess their interoperability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SSR es el acrónimo de SoundScape Renderer (tool for real-time spatial audio reproduction providing a variety of rendering algorithms), es un programa escrito en su mayoría en C++. El programa permite al usuario escuchar tanto sonidos grabados con anterioridad como sonidos en directo. El sonido o los sonidos se oirán, desde el punto de vista del oyente, como si el sonido se produjese en el punto que el programa decida, lo interesante de este proyecto es que el sonido podrá cambiar de lugar, moverse, etc. Todo en tiempo real. Esto se consigue sin modificar el sonido al grabarlo pero sí al emitirlo, el programa calcula las variaciones necesarias para que al emitir el sonido al oyente le llegue como si el sonido realmente se generase en un punto del espacio o lo más parecido posible. La sensación de movimiento no deja de ser el punto anterior cambiando de lugar. La idea era crear una aplicación web basada en Canvas de HTML5 que se comunicará con esta interfaz de usuario remota. Así se solucionarían todos los problemas de compatibilidad ya que cualquier dispositivo con posibilidad de visualizar páginas web podría correr una aplicación basada en estándares web, por ejemplo un sistema con Windows o un móvil con navegador. El protocolo debía de ser WebSocket porque es un protocolo HTML5 y ofrece las “garantías” de latencia que una aplicación con necesidades de información en tiempo real requiere. Nos permite una comunicación full-dúplex asíncrona sin mucho payload que es justo lo que se venía a evitar al no usar polling normal de HTML. El problema que surgió fue que la interfaz de usuario de red que tenía el programa no era compatible con WebSocket debido a un handshacking inicial y obligatorio que realiza el protocolo, por lo que se necesitaba otra interfaz de red. Se decidió entonces cambiar a JSON como formato para el intercambio de mensajes. Al final el proyecto comprende no sólo la aplicación web basada en Canvas sino también un servidor funcional y la definición de una nueva interfaz de usuario de red con su protocolo añadido. ABSTRACT. This project aims to become a part of the SSR tool to extend its capabilities in the field of the access. SSR is an acronym for SoundScape Renderer, is a program mostly written in C++ that allows you to hear already recorded or live sound with a variety of sound equipment as if the sound came from a desired place in the space. Like the web-page of the SSR says surely better explained: “The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering algorithms.” The application can be used with a graphical interface written in Qt but has also a network interface for external applications to use it. This network interface communicates using XML messages. A good example of it is the Android client. This Android client is already working. In order to use the application should be run it by loading an audio source and the wanted environment so that the renderer knows what to do. In that moment the server binds and anyone can use the network interface. Since the network interface is documented everyone can make an application to interact with this network interface. So the application can have as many user interfaces as wanted. The part that is developed in this project has nothing to do neither with audio rendering nor even with the reproduction of the spatial audio. The part that is developed here is about the interface used in the SSR application. As it can be deduced from the title: “Distributed Web Interface for Real-Time Spatial Audio Reproduction System”, this work aims only to offer the interface via web for the SSR (“Real-Time Spatial Audio Reproduction System”). The idea is not to make a new graphical interface for SSR but to allow more types of interfaces and communication. To accomplish the objective of allowing more graphical interfaces this project is going to use a new network interface. By now the SSR application is using only XML for data interchange but this new network interface support JSON. This project comprehends the server that launch the application, the user interface and the new network interface. It is done with these modules in order to allow creating new user interfaces that can communicate with the server or new servers that can communicate with the user interface by defining a complete network interface for data interchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Especificación Aeroespacial y de Defensa 2000M, también conocida como S2000M, es un protocolo de intercambio electrónico de datos utilizado en el apoyo logístico de equipos de defensa. La S2000M, resultado de un trabajo conjunto entre Fuerzas Armadas (FFAA) y empresas de Naciones diversas desarrollado durante las últimas cuatro décadas, define tanto los procesos para la adquisición y mantenimiento de componentes militares, como los mensajes normalizados en apoyo de dichos procesos. Equipos de trabajo constituidos por representantes de las citadas FFAA e industria mantienen actualizada la S2000M, por lo que el protocolo evoluciona continuamente con objeto de adaptarse a las necesidades que puedan surgir. Como consecuencia de dicha actualización, existen diversas versiones de la S2000M actualmente en servicio, y este trabajo se basa en la versión denominada 2.1, si bien, una parte importante de las conclusiones del estudio pueden aplicarse a otras versiones del protocolo. A través de los años, la S2000M se ha convertido en un elemento esencial del comercio electrónico de piezas de repuesto y de servicios de mantenimiento y reparación de modernos sistemas aeronáuticos Europeos tales como los aviones de combate Typhoon, Tornado y Rafale, el avion de transporte A400M y los helicópteros NH90 y Tiger, por lo que la S2000M constituye un elemento esencial en el apoyo logístico necesario para asegurar la disponibilidad operativa de dichos sistemas. Así mismo, la S2000M juega un papel fundamental en el comercio electrónico entre las principales empresas aeronáuticas europeas y las organizaciones logísticas de defensa de Naciones tales como Alemania, España, Francia, Holanda, Italia, etc. En consecuencia, la importancia de la S2000M en aspectos tales como logística, nivel de operatividad de los sistemas de armas mencionados, comercio electrónico y sistemas de información es manifiesta, por lo que resulta necesario evaluar la eficacia y eficiencia del protocolo para optimizarlo al máximo. Con este propósito, el presente trabajo estudia la S2000M con objeto de encontrar una respuesta a la pregunta que ha constituido la base de la investigación: ¿Cómo medir el éxito de la Especificación Aeroespacial y de Defensa S2000M? Como la S2000M se utiliza para intercambiar información logística en formato electrónico entre organizaciones y entidades por medio de documentos estructurados y de procesos automatizados, los sistemas de información juegan un papel fundamental en este trabajo. En consecuencia, la base teoríca para tratar de responder a la pregunta anteriormente citada se sustenta en las investigaciones en curso sobre el éxito de los sistemas de información, adaptadas a la problemática específica del protocolo S2000M. Para finalizar, es importante mencionar que debido a que la investigación sobre la S2000M es prácticamente inexistente, este trabajo se centra en un área específica de conocimiento hasta ahora casi inexplorada. El resultado de la investigación se materializa en una serie de propuestas teoricas y prácticas con las que se contribuyen al desarrollo de tres áreas de conocimiento: S2000M, Sistemas de Información e Intercambio Electrónico de Datos. Asimismo, se proponen nuevas áreas de estudio en las tres áreas mencionadas. ABSTRAC The Aerospace and Defence Specification 2000M, in short S2000M, is an Electronic Data Interchange (EDI) standard used in the logistic support of defence equipment. The S2000M is the result of the joint effort undertaken by the Armed Forces and industry of several Nations over the last four decades. The protocol defines the business processes for the supply, maintenance and repair of military components, as well as the standard messages on support of the said processes. Representatives from industry and military keep the S2000M up-to-date and therefore, the protocol evolves continuously to support new requirements that may arise. Consequently, there are different versions of the standard currently available and this study is about one of them, precisely, Revision 2.1; however, many of the research outcomes are also be valid for other versions of the protocol. Through the years, the S2000M has become an essential element for the electronic trade of spare parts and repair services on support of modern European aeronautical systems such as the fighters Typhoon, Tornado and Rafale, the airlifter A400M and the helicopters NH90 and Tiger. As a result, the S2000M is at the center of the logistic support required to ensure the operational availability of these systems. Further, the protocol plays a key role in the electronic exchanges among main European aeronautical players and defence logistics organizations from Nations such as France, Germany, Italy, Netherlands, Spain, etc. Therefore, the significance of the S2000M on the operational availability of the mentioned weapon systems, and in logistics, electronic business and Information Systems (IS) terms is noticeable, and it is then worth evaluating how the S2000M is doing with respect to its effectiveness and efficiency in order to improve these two areas as much as possible. To this end, this work analyzes the S2000M with the aim to find a response to the following research question: How to measure the success of the Aerospace and Defence Specification 2000M? As in the end the S2000M is about the electronic exchange of logistics information among organizations and firms by means of standard messages and processes automation, IS are at the core of this dissertation. For that reason, the theoretical foundation to tackle the research question rests on the ongoing stream of research on IS success, which will be extended to take into consideration the S2000M standpoint as well. Last, it is worth noting that due to the practically inexistent research on the S2000M M, this investigation help filling a gap in this domain. The outcomes from this study materialize in a number of conceptual and practical proposals that contribute to the theory and practice on three main knowledge areas, that is, S2000M, IS and EDI. Further, this work opens the door for further research in the said or related fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outstanding problem for useful applications of electrodynamic tethers is obtaining sufficient electron current from the ionospheric plasma. Bare tether collectors, in which the conducting tether itself, left uninsulated over kilometers of its length, acts as the collecting anode, promise to attain currents of 10 A or more from reasonably sized systems. Current collection by a bare tether is also relatively insensitive to drops in electron density, which are regularly encountered on each revolution of an orbit. This makes nighttime operation feasible. We show how the bare tether's high efficiency of current collection and ability to adjust to density variations follow from the orbital motion limited collection law of thin cylinders. We consider both upwardly deployed (power generation mode) and downwardly deployed (reboost mode) tethers, and present results that indicate how bare tether systems would perform as their magnetic and plasma environment varies in low earth orbit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La planificación y las políticas de transporte no pueden descuidar la calidad del servicio, considerando que influye notablemente en el cambio modal del coche hacia otros medios de transporte más sostenibles. El concepto se aplica también a los intercambiadores de transporte público, los nodos del sistema donde se cruzan las distintas redes del transporte público y privado. Aunque se han logrado numerosos avances para medir y evaluar la calidad en el sector del transporte público, se han dedicado relativamente pocos esfuerzos a investigar estos aspectos relacionados con la calidad de los intercambiadores del transporte público. Este trabajo de investigación se concentra en la calidad del servicio de la transferencia modal en los intercambiadores interurbanos, según la perspectiva de los viajeros. Su objetivo es identificar los factores clave de la calidad del servicio y los perfiles de los viajeros en los intercambiadores. La investigación es exploratoria y ofrece información acerca de la percepción de los viajeros intermodales relacionada con los aspectos de la calidad, aportando nuevos elementos y datos para adentrarse en estudios más detallados. La metodología del trabajo combina técnicas de análisis estadístico multivariante para analizar los datos de las encuestas sobre la satisfacción de los clientes y se subdivide en tres etapas. En primer lugar, se ha implementado el análisis de correspondencias múltiples para explorar los constructos latentes relacionados con la satisfacción de las características cualitativas de los intercambiadores interurbanos, identificando así los factores clave de la calidad. En segundo lugar, se ha aplicado un análisis de conglomerados de k-medias sobre los factores clave de calidad para clasificar a los viajeros en grupos de usuarios de transportes homogéneos, de acuerdo con su percepción de satisfacción, identificando de este modo los perfiles de los viajeros. Por último, se han formulado sugerencias y recomendaciones sobre la calidad para respaldar la formulación de políticas, estableciendo las prioridades para los intercambiadores interurbanos. La metodología se aplicó en cuatro intercambiadores interurbanos (estaciones de ferrocarriles o de autobuses ) en Madrid, Zaragoza, Gothenburg y Lion, analizando los datos recogidos mediante una encuesta de satisfacción del cliente llevada a cabo en 2011 en los cuatro casos de estudio, donde se interconectan distintos medios de transporte público y privado, de corta y larga distancia. Se recogieron datos sobre la satisfacción de los viajeros con 26 criterios de calidad, así como información sobre aspectos socio-económicos y pautas de comportamiento de viajes. Mediante el análisis de correspondencias múltiples se identificaron 4-5 factores clave de calidad en cada intercambiador, que se asocian principalmente con el sistema de emisión de billetes, el confort y la interconexión, mientras que los viajeros no perciben los temas clásicos como la información. Mediante el análisis de conglomerados se identificaron 2-5 perfiles de viajeros en cada intercambiador. Se reconocieron dos grupos de viajeros en casi todos los casos de estudio: viajeros de cercanía/trabajadores y turistas. Por lo que concierne a las prioridades para apoyar a las partes interesadas en la formulación de políticas, la expedición de billetes es el factor clave para los intercambiadores interurbanos españoles, mientras que la interconexión y los aspectos temporales se destacan en los intercambiadores de Francia y Suecia. Quality of Service can not be neglected in public transport planning and policy making, since it strongly influences modal shifts from car to more sustainable modes. This concept is also related to Public Transport interchanges, the nodes of the transport system where the different sub-systems of public passenger transport and personal vehicles meet. Although a lot of progress has been generally done to measure and assess quality in public transport sector, relatively little investigation has been conducted on quality at PT interchanges. This research work focusses on Quality of Service in the use of transfer facilities at interurban interchanges, according to current travellers’ perspective. It aims at identifying key quality factors and travellers profiles at interurban interchanges. The research is exploratory and offers insight into intermodal travellers’ perception on quality aspects, providing new elements and inputs for more definitive investigation. The methodology of the work combines multivariate statistical techniques to analyse data from customer satisfaction surveys and is subdivided in three steps. Firstly, multiple correspondence analysis was performed to explore latent constructs as concern satisfaction of quality attributes at interurban interchanges, thus identifying the so-called Key Quality Factor. Secondly, k-means cluster analysis was implemented on the key quality factors to classify travellers in homogeneous groups of transport users, according to their perception of satisfaction, thus identifying the so-called Travellers Profiles. Finally, hints and recommendations on quality were identified to support policy making, setting priorities for interurban interchanges. The methodology was applied at four interurban interchanges in Madrid, Zaragoza, Gothenburg and Lyon, analysing the data collected through a customer satisfaction survey carried out in 2011 at the four railway or bus stations where different modes of public and private transport are interconnected covering both short and long trips. Data on travellers’ satisfaction with 26 quality attributes were collected, as well as information on socio-economical and travel patterns. Through multiple correspondence analysis were identified 4-5 key quality factors per interchange. They are mainly related to ticketing, comfort and connectivity, while classical issues, as information, are not perceived as important by travellers’. Through cluster analysis were identified 2-5 travellers profiles per interchange. Two groups of travellers can be found in almost all case studies: commuter / business travellers and holiday travellers. As regards the priorities to support stakeholders in policy making, ticketing is the key-issue for the Spanish interurban interchanges, while connectivity and temporal issues emerge in the French and Swedish case studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a meta-analysis of long/short distance passenger interconnectivity within the European context. The analysis is based on the results of the European project HERMES of the 7th EU R&D Programme. The study collected stakeholders and travelers’ valuation and preferences in 5 interchanges in 3 EU countries. To that end a common survey was conducted in the following sites: Gothenburg Central Station (Sweden), Avenida de America Interchange in Madrid, Lleida-Zaragoza railway stations (Spain), and the Intermodal Station of Part Dieu in Lyon (France). The first survey addresses the analysis of the different stakeholders’ opinion on the interchange management and characteristics. The second survey gives an insight into the key requirements of long/short distance intermodal passengers in the selected case studies. This included the following aspects: on one hand, trip origin and destination, connecting transport services and modes, trip characteristics, type of ticket, trip motive and socioeconomic characteristics of the traveller. On the other hand, it was structured in such a way to ask passengers to rate importance/satisfaction of a series of common quality and functional aspects like information, accessibility, transfer times, service supply, etc. In conclusion, the paper highlights which elements of the interchange are considered as relevant and how different groups of stakeholders value them, both theoretically and in the selected case studies. They also have identified some key barriers as the lack of internal coordination among operators, managers and decision makers, as well as the the poor signage, particularly among connecting services. Travellers seem to have different priorities depending on their age, purpose of trip and mode chosen. In some cases time appears as the most relevant factor, whilst price is decisive in others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality of service should not be overlooked in public transport planning and policy making, as it influences modal shift from car use to more sustainable means. Little research has been conducted on the quality of public transport interchanges from the perspective of current travellers (i.e. perceived quality). This work is thus aimed at identifying key quality factors in urban interchanges, through an exploratory approach (multiple correspondence analysis) that provides novel elements for further research. The methodology was applied at interchanges in Madrid and Gothenburg and the data used in the analysis were collected through customer satisfaction surveys conducted in 2011. The analysis identified five key quality factors per interchange. Ticketing plays a key role at both interchanges while physical and environmental issues emerged at Avenida de America in Madrid, and services, temporal issues and interconnectivity characterise Gothenburg central station. Compared with other quality aspects, classical issues such as safety/security and information are not perceived as important by intermodal travellers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from an attitudinal survey and stated preference ranking experiment conducted in two urban European interchanges (i.e. City-HUBs) in Madrid (Spain) and Thessaloniki (Greece) show that the importance that City-HUBs users attach to the intermodal infrastructure varies strongly as a function of their perceptions of time spent in the interchange (i.e.intermodal transfer and waiting time). A principal components analysis allocates respondents (i.e. city-HUB users) to two classes with substantially different perceptions of time saving when they make a transfer and of time using during their waiting time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.