2 resultados para Intensive family preservation programs
em Universidad Politécnica de Madrid
Resumo:
This paper performs a further generalization of the notion of independence in constraint logic programs to the context of constraint logic programs with dynamic scheduling. The complexity of this new environment made necessary to first formally define the relationship between independence and search space preservation in the context of CLP languages. In particular, we show that search space preservation is, in the context of CLP languages, not only a sufficient but also a necessary condition for ensuring that both the intended solutions and the number of transitions performed do not change. These results are then extended to dynamically scheduled languages and used as the basis for the extension of the concepts of independence. We also propose several a priori sufficient conditions for independence and also give correctness and efficiency results for parallel execution of constraint logic programs based on the proposed notions of independence.
Resumo:
New digital artifacts are emerging in data-intensive science. For example, scientific workflows are executable descriptions of scientific procedures that define the sequence of computational steps in an automated data analysis, supporting reproducible research and the sharing and replication of best-practice and know-how through reuse. Workflows are specified at design time and interpreted through their execution in a variety of situations, environments, and domains. Hence it is essential to preserve both their static and dynamic aspects, along with the research context in which they are used. To achieve this, we propose the use of multidimensional digital objects (Research Objects) that aggregate the resources used and/or produced in scientific investigations, including workflow models, provenance of their executions, and links to the relevant associated resources, along with the provision of technological support for their preservation and efficient retrieval and reuse. In this direction, we specified a software architecture for the design and implementation of a Research Object preservation system, and realized this architecture with a set of services and clients, drawing together practices in digital libraries, preservation systems, workflow management, social networking and Semantic Web technologies. In this paper, we describe the backbone system of this realization, a digital library system built on top of dLibra.