47 resultados para Intelligent systems

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we propose a new benchmark to drive making decisions in maintenance of computer systems. This benchmark is made from load average sample data. The main goal is to improve reliability and performance of a set of devices or components. In particular, the stability of the system is measured in terms of variability of the load. A forecast of the behavior of this stability is also proposal as part of the reporting benchmark. At the final stage, a more stable system is obtained and its global reliability and performance can be then evaluated by means of appropriate specifications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collaborative filtering recommender systems contribute to alleviating the problem of information overload that exists on the Internet as a result of the mass use of Web 2.0 applications. The use of an adequate similarity measure becomes a determining factor in the quality of the prediction and recommendation results of the recommender system, as well as in its performance. In this paper, we present a memory-based collaborative filtering similarity measure that provides extremely high-quality and balanced results; these results are complemented with a low processing time (high performance), similar to the one required to execute traditional similarity metrics. The experiments have been carried out on the MovieLens and Netflix databases, using a representative set of information retrieval quality measures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is remarkable growing concern about the quality control at the time, which has led to the search for methods capable of addressing effectively the reliability analysis as part of the Statistic. Managers, researchers and Engineers must understand that 'statistical thinking' is not just a set of statistical tools. They should start considering 'statistical thinking' from a 'system', which means, developing systems that meet specific statistical tools and other methodologies for an activity. The aim of this article is to encourage them (engineers, researchers and managers) to develop a new way of thinking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pridneprovsky Chemical Plant was one of the largest uranium processing enterprises in the former USSR, producing a huge amount of uranium residues. The Zapadnoe tailings site contains most of these residues. We propose a theoretical framework based on multicriteria decision analysis and fuzzy logic to analyze different remediation alternatives for the Zapadnoe tailings, which simultaneously accounts for potentially conflicting economic, social and environmental objectives. We build an objective hierarchy that includes all the relevant aspects. Fuzzy rather than precise values are proposed for use to evaluate remediation alternatives against the different criteria and to quantify preferences, such as the weights representing the relative importance of criteria identified in the objective hierarchy. Finally, we suggest that remediation alternatives should be evaluated by means of a fuzzy additive multi-attribute utility function and ranked on the basis of the respective trapezoidal fuzzy number representing their overall utility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expert knowledge is used to assign probabilities to events in many risk analysis models. However, experts sometimes find it hard to provide specific values for these probabilities, preferring to express vague or imprecise terms that are mapped using a previously defined fuzzy number scale. The rigidity of these scales generates bias in the probability elicitation process and does not allow experts to adequately express their probabilistic judgments. We present an interactive method for extracting a fuzzy number from experts that represents their probabilistic judgments for a given event, along with a quality measure of the probabilistic judgments, useful in a final information filtering and analysis sensitivity process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a knowledge model for a configuration problem in the do-main of traffic control. The goal of this model is to help traffic engineers in the dynamic selection of a set of messages to be presented to drivers on variable message signals. This selection is done in a real-time context using data recorded by traffic detectors on motorways. The system follows an advanced knowledge-based solution that implements two abstract problem solving methods according to a model-based approach recently proposed in the knowledge engineering field. Finally, the paper presents a discussion about the advantages and drawbacks found for this problem as a consequence of the applied knowledge modeling ap-proach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge acquisition and model maintenance are key problems in knowledge engineering to improve the productivity in the development of intelligent systems. Although historically a number of technical solutions have been proposed in this area, the recent experience shows that there is still an important gap between the way end-users describe their expertise and the way intelligent systems represent knowledge. In this paper we propose an original way to cope with this problem based on electronic documents. We propose the concept of intelligent document processor as a tool that allows the end-user to read/write a document explaining how an intelligent system operates in such a way that, if the user changes the content of the document, the intelligent system will react to these changes. The paper presents the structure of such a document based on knowledge categories derived from the modern knowledge modeling methodologies together with a number of requirements to be understandable by end-users and problem solvers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.